

Event 2598326 Run 168486 Wed, 25 Nov 2015 12:51:53

Charm mixing with $D^0 \rightarrow K \pi \pi^0$

Summer Studen 2016 - LICh

Serena Maccolini Supervisor: Angelo Di Canto August 30, 2016

About me

- I'm from Italy!
- Bachelor in Physics at University of Bologna.
- Now I'm an undergraduate student in Nuclear and Subnuclear Physics.

Mixing of neutral mesons

• Flavour and mass eigenstates are different.

$$\ket{P_{1,2}}=p\ket{P^0(t)}\pm q\ket{ar{P}^0(t)}$$

• This causes $P^0 \leftrightarrow \bar{P}^0$ transitions described by

 $|\langle P^{0}(0)|P^{0}(t)\rangle|^{2} \propto e^{-\Gamma t}[\cosh(y\Gamma t) + \cos(x\Gamma t)] \\ |\langle P^{0}(0)|\bar{P}^{0}(t)\rangle|^{2} \propto e^{-\Gamma t}[\cosh(y\Gamma t) - \cos(x\Gamma t)]$

Serena Maccolini

 $D^0 - \overline{D^0}$ mixing

How can you measure mixing?

• Look at rate of wrong-sign (WS) $D^* \to D^0 (\to K \pi \pi^0) \pi_S$ decays with respect to right-sign (RS) decays.

• Time-dependent analysis to disentangle mixing from DCS rate.

$$R(t) = \frac{WS(t)}{RS(t)} \approx R_D + \alpha \sqrt{R_D} y'\left(\frac{t}{\tau}\right) + \frac{x^2 + y^2}{4} \left(\frac{t}{\tau}\right)^2$$
$$y' = y \cos(\delta) - x \sin(\delta)$$

• Most of the sensitivity to mixing comes from the interference term.

Dataset and event selection

Dataset

• Started to look at 2012 data

 $\begin{array}{l} {\rm Resolved} \ \pi^{\rm 0} \\ \gamma\gamma \ {\rm in \ different \ clusters \ of \ the} \\ {\rm ECAL}. \end{array}$

 $\begin{array}{l} {\rm Merged} \ \pi^{\rm 0} \\ \gamma\gamma \ {\rm in \ the \ same \ cluster \ of \ the} \\ {\rm ECAL}. \end{array}$

Selected candidates

In addition to provide the flavour at production, the D^* decay also helps to reject lots of background (very small Q-value).

BDT training

indidates/(87 keV/c

100E

50 2.005 2.01 2.015 2.02

- Implement a BDT selection to suppress the large **random**- π background of the **WS** sample.
 - Train on $\ensuremath{\text{RS}}$ data (more abundant and cleaner)
- Identify input variables that have good **separation** between signal and background but also **low correlation** with $M_{D^0\pi_S}$ and with Dalitz plot.

2.025 2.03 Mrs (GeV/C)

Merged π^0 :

Variable	$< S^{2} >$
$p_T(D^0)$	8.3%
$cos heta_{XY}(p_{K\pi} ext{vs} p_{\pi^0})$	6.5%
$CL(\pi^0)$	4.8%
$P(\pi_S \to \pi)$	3.0%
$\log({\sf DTF1_V\chi^2})$	2.5%

Variable	$< S^{2} >$
$p_T(\pi_S)$	7.4%
$P(\pi_S o \pi)$	6.7%
$p(\pi_S)$	1.6%
$\log(DTF1_V\chi^2)$	0.1%

BDT distribution and ROC curve

Resolved π^0 :

BDT separation: 0.184

Merged π^0 :

BDT separation: 0.151

BDT optimization

Choose the BDT cut that minimises the uncertainty of the time integrated WS/RS ratio.

20% improvement in precision for candidates with resolved π^0 , while only a marginal gain for the merged sample.

Overlap between WS and RS candidates

Additional background reduction when removing WS candidates whose D^0 is also used to recunstruct a good RS candidate.

Overlapped WS candidates

Final samples

Resolved

In WS fitting, the signal shape is fixed with RS values.

Merged

Time-dependent WS/RS ratio

Conclusion and future projects

First attempt to measure $D^0 - \overline{D}^0$ mixing using $D^0 \to K \pi \pi^0$ decays at LHCb:

- Results seem to be competitive with other measurements of these decays, but will have a marginal impact on the world average.
- Could increase sensitivity with more statistics and/or a time-dependent Dalitz-plot analysis.
- Left to be done: look at Run 2 data and particularly at the 2016 sample (higher cross-section and dedicate triggers)

Year	N_{RS}/L (fb)
2012	2'700'000
2015	6'400'000
2016	?

Thank you!

D^0 mixing formalism

• Eigenstate can have different masses and decay width

$$\ket{D_{1,2}} = p \ket{D^0(t)} \pm q \ket{ar{D}^0(t)}$$

$$x = \frac{m_1 - m_2}{\Gamma} \ y = \frac{\Gamma_1 - \Gamma_2}{2\Gamma}$$
 with $\Gamma = \frac{\Gamma_1 + \Gamma_2}{2}$

• The time evolution is described by

$$\ket{D^0(t)} = g_+ \ket{D^0(0)} + rac{q}{p} g_- \ket{ar{D}^0(0)}$$

$$|ar{D}^0(t)
angle = g_+ \, |ar{D}^0(0)
angle + rac{q}{p}g_- \, |D^0(0)
angle$$

with

$$g_{+}(t) = e^{-iMt - \Gamma t/2} \cos\left(\frac{x}{2}\Gamma t - \frac{iy}{2}\Gamma t\right)$$

and

$$g_{-}(t) = e^{-iMt - \Gamma t/2} i \sin\left(rac{x}{2} \Gamma t - rac{iy}{2} \Gamma t
ight)$$

Dataset and event selection

Dataset

• 2012 sample candidates reconstructed using DstarToHHPiO_KpipiO_R_Line and DstarToHHPiO_KpipiO_M_Line from Stripping21, Stripping24 and Stripping26.

Decay Tree Fitter

- constraining the $D^0\pi_S$ vertex to the primart vertex
- constraining the π^0 mass to the PDG value.

Additional cuts

- *KPID_K* > 8;
- $\pi PID_{K} < -5;$
- $D^0 IP \chi^2 < 9.$
- $1825 < M_{D^0} < 1910$ MeV (resolved π^0)
- $1800 < M_{D^0} < 1950$ MeV (merged π^0)

BDT training variables distributions (Resolved)

BDT training variables distributions (Merged)

Serena Maccolini

BDT training variables correlation matrices (Resolved)

BDT training variables correlation matrices (Merged)

Low correlation of BDT check with $M_{D^0\pi s}$ and Dalitz plot

Resolved π^0 :

The fit

• The **signal** is parametrize with a linear combination of a <u>Johnson SU</u> distribution and <u>three Gaussian</u> distributions.

Johnson SU: trasformation of the normal distribution

$$z = \gamma + \delta \sinh^{-1}\left(\frac{x-\xi}{\lambda}\right)$$
 where $z \sim \mathcal{N}(0, 1)$.

 The background, given by a random soft pion π_S, is parametrized using the function:

$$(m-m_0)^lpha e^{eta(m-m_0)}$$
 with m= $M_{D^0\pi_S}$ and $m_0=m_{D^0}+m_{\pi^+}$

BDT optimization Resolved

 \rightarrow I found the minimum uncertainty for $BDT_{cut} = 0.09$

$\begin{array}{c} \textbf{BDT} \quad \textbf{optimization} \\ \textbf{Merged} \end{array}$

 \rightarrow I chose *BDT_{cut}* = -0.1

The uncertainty has not improved but the significance has.