Adding timing to the VELO

Biljana Mitreska

Summer Student Project

Supervisor: Mark Williams

LHCb - CERN

August 1,2017

Biljana Mitreska (LHCb - CERN)

About me

Introduction

- Project details
- 4 Simulation procedure
- 5 Results and discussion
- 6 Conclusion and future work

-

• • • • • • • • • • • • •

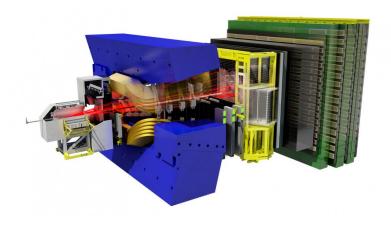
About me

- 2 Introduction
- 3 Project details
- 4 Simulation procedure
- 5 Results and discussion
- 6 Conclusion and future work

About me

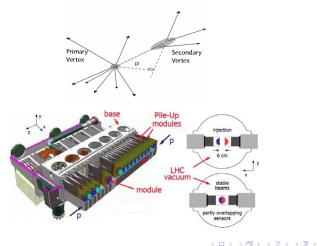
 Bachelor student at Ss. Cyril and Methodius University, Skopje, Macedonia

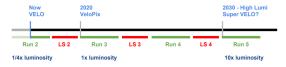
- beside physics... swimming, biking and running
- enthusiastic about hiking


About me

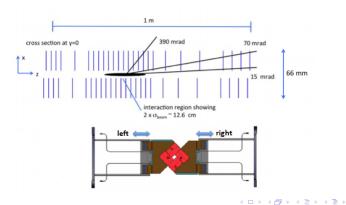
Introduction

- 3 Project details
- Simulation procedure
- 5 Results and discussion
- 6 Conclusion and future work

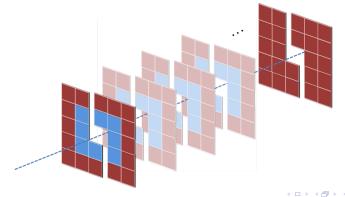

LHCb experiment


2

VELO-Vertex Locator


- locating primary vertices(PVs)
- decay product secondary vertex(SV)

VELO upgrade plan



Phase 1


VELO upgrade plan

- Phase 2
 - For this study Phase-I VELO design was used:
 - 55 μm pixels
 - module positions are based on previous upgrade Phase 1
 - modules have timing information of different precision

2 Introduction

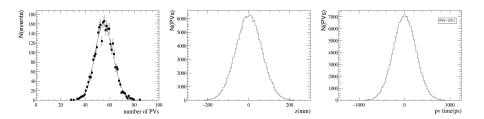
- Simulation procedure
- 5 Results and discussion
- 6) Conclusion and future work

Project goals

- study the VELO performance at 50x current luminosity(10x Phase-I luminosity)
- perform a Monte Carlo simulation to study the PV mis-association
- using spatial + timing information
- determine the PV mismatch fraction for b mesons

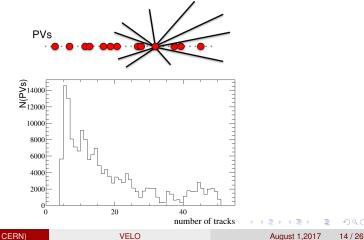
August 1,2017

1 About me

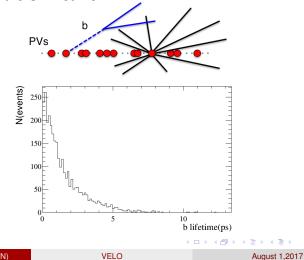

- 2 Introduction
- 3 Project details
- Simulation procedure
- 5 Results and discussion
- 6) Conclusion and future work

August 1,2017

generate primary vertices along the beam line

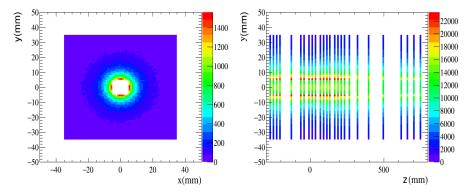

Biljana Mitreska (LHCb - CERN)

August 1,2017 13 / 26


э

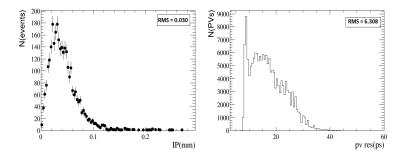
< A

- generation of particles from each PV
 - $-\eta$ values between 2 and 5(taken from full LHCb simulation)
 - $-\phi$ uniform distribution


- one PV is chosen as the SV parent (b hadron parent)
- distribution of the SV lifetime

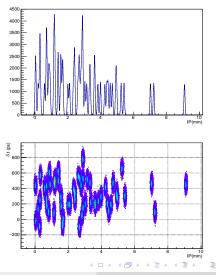
15/26

Biljana Mitreska (LHCb - CERN)


All tracks with hits > 3 are reconstructed

Biljana Mitreska (LHCb - CERN)

August 1,2017 16 / 26


- PVs and SV reconstructed using track sample
- The Impact parameter(IP) of every PV is calculated

Compare two methods to associate b to PV

1. using IP \Rightarrow PV with min IP

2. using IP + timing $\Rightarrow \frac{PV \text{ with min}}{\sqrt{\frac{(IP)^2}{\sigma_{IP}^2} + \frac{(\delta t)^2}{\sigma_t^2}}}$

Biljana Mitreska (LHCb - CERN)

August 1,2017 18 / 26

About me

- 2 Introduction
- Project details
- 4 Simulation procedure
- 5 Results and discussion
 - Onclusion and future work

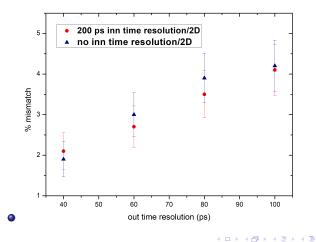
∃ > < ∃ >

August 1,2017

PV mismatch comparison (without timing)

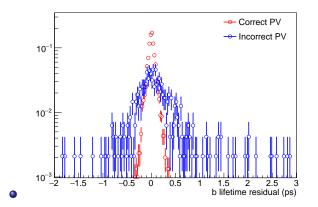
• During Phase 1 upgrade 1% mis-association predicted

• During Phase 2 expected results are \approx 15 % mismatch


• How to improve this?

August 1.2017

• inner and outer part of the detector have precise timing resolutions



Biljana Mitreska (LHCb - CERN)

August 1,2017 21 / 26

э

Expected < 5 % mismatch under HL conditions using spatial + timing info

Biljana Mitreska (LHCb - CERN)

イロト イヨト イヨト イヨト

August 1,2017

1 About me

- 2 Introduction
- Project details
- 4 Simulation procedure
- 5 Results and discussion
- 6 Conclusion and future work

< ロ > < 同 > < 回 > < 回 >

August 1,2017

Summary

- a Monte Carlo study was conducted
- new detector model was developed
- pixel detector with timing resolution(inner and outer region)
- Adding modest timing precision to the detector at large radius reduces PV mis-association rate from 15% to 5%

B N A B N

Future work

- accounting for different pixel sizes in the inner/outer detector region
- optimising the PV selection algorithm by improving the 2D distance approach

3

Thank you for your attention!