

Event 74374790 Run 173768

Measurement of CP asymmetries in $D^0 \to K^0_S K^0_S$ decays using Run II data.

Kamil Fischer

Iniversity of Manchester

Supervised by: Andrea Contu and Angelo Di Canto

About me

- I am a third year masters student. (MPhys)
- I study at the University of • Manchester in the UK.
- I was born in Poland. •

 $D^0/\bar{D}^0 \rightarrow K^0_{\rm S}K^0_{\rm S}$ decays

ヨトィヨ

Motivation

- CP violation has not been observed in charm.
- D⁰ → K⁰_SK⁰_S is a promising channel for discovery.
 - The decay amplitudes are suppressed. Main contribution is due to SU(3) symmetry breaking.
 - (II) Standard Model expectation: $|A_{CP}^{dir}(D^0 \rightarrow K_S^0 K_S^0)| < 1.1\%$
 - (III) May be enhanced by new physics.

$A_{CP}[\%]$	Yield	Year	Collaboration			
-23 ± 19	65 ± 14	2008	CLEO			
$-2.9 \pm 5.2 \pm 2.2$	635 ± 74	2015	LHCb Run 1			
$-0.02 \pm 1.53 \pm 0.17$	$5399{\pm}87$	2016	Belle			
Comment over entry and the						

Current experimental results

Penguin annihilation

Experimental Approach

- A sample of flavour tagged D^{*±} → D⁰(→ K⁰_SK⁰_S)π[±]_S candidates is used.
- The measured asymmetry is given by:

$$A_{raw} = \frac{N_{D^0} - N_{\bar{D}^0}}{N_{D^0} + N_{\bar{D}^0}}$$
(1)

For small values of the asymmetries:

$$A_{raw} \approx A_{CP} + A_{prod} + A_{det}$$
(2)
• *D** production asymmetry
• π_{S}^{\pm} detection asymmetry

•
$$A_{prod}$$
 and A_{det} are subtracted via ΔA_{CP} using
 $D^0 \rightarrow K^+K^-$ as the control channel.
(I) $A_{CP}(D^0 \rightarrow K^+K^-) = (0.04 \pm 0.12 \pm 0.10)\%$ [LHCb Run 1]

Decay reconstruction

- K_S^0 Long(L): Both pion daughters have a LONG track type.
- K_S^0 Down(D): Both pion daughters have a DOWNSTREAM track type.

Fiducial cuts and trigger selection

- Trigger selection is applied to the *D*⁰ and *D*^{*} candidates by requiring:
 - (I) L0: D0_L0HadronDecision_TOS or DS_L0Global_TIS
 - (II) HIt1: D0_HIt1TrackMVADecision_TOS
- Cuts on the momentum of the slow pion are introduced to reduce large sources of detection asymmetry.

Kamil Fischer

Sources of background

- Combinatorial background
 - (I) Main source of background
 - (II) Reduced by applying cuts on P_T of D^* , D^0 and π_S^+ . Selection of D^* vertex χ^2 , D^0 flight distance and DIRA of D^0 can be useful.
- Prompt peaking background
 - (I) An important source of background originates from $D^0 \rightarrow K_S^0 \pi^+ \pi^-$ and $D^0 \rightarrow \pi^+ \pi^- \pi^+ \pi^-$ channels in which the dipion mass falls close to the K_S^0 mass.
- Prompt non-peaking background

Secondaries

Prompt peaking background

Kamil Fischer

 $D^0/\bar{D}^0 \to K^0_S K^0_S$ decays

August 29, 2017 8 / 26

何トイヨトイヨト

Prompt non-peaking background and Secondaries

- Prompt non-peaking background originates from charm meson decays (D[±]_S → K⁰_SK⁰_Sπ[±]_S).
 - (I) Doesn't peak in D^0 or D^* mass distributions.
 - (II) Can be suppressed with: $|m(K_S^0K_S^0) 1865| < 20$.
- Secondary decays occur when the *D** candidate originates from the decay of a b-hadron.
 - (I) This results in a shift of A_{raw} due to a different A_{prod} .
 - (II) Can be suppressed with cuts on $\chi^2_{IP}(D^0)$, $\chi^2_{IP}(\pi^{\pm}_S)$ and $\chi^2_{SV-PV}(D^*)$.

Candidates from 2015 + 2016

- Combined statistical precision: 3.5%.
- No DD candidates due to a bug in the trigger \rightarrow Hlt1: required at least one of the D^0 final states to be long. (Fixed for 2017)

Improved HIt2 selection for 2017

- Selection criteria of Hlt2 has been updated:
 - LL sample: relaxed D⁰ lifetime requirements, lower K⁰_S(χ²_{IP}) thresholds and removed HLT1 requirement.
 LD/DD sample: lower Σ_{PT} K⁰_S, looser D⁰ lifetime requirement, lower K⁰_S(P_T) and no HLT1 requirement.
- Trigger efficiencies are calculated by applying L0,Hlt1 and Hlt2 conditions to an MC sample of 4061 candidates.
 - (I) LL/LD: Expect an improvement in the efficiency of HIt2 by a factor of 3.5-5.
 - (II) DD: HIt2 efficiency relative to L0 events (1.4 ± 0.1) %.

Candidates from 2017

- Combined improvement (early 2017 data): 1.9 ± 0.2 .
- Yields are extracted using offline selection optimised for the 2015 + 2016 sample.

 $D^0/\bar{D}^0 \to K^0_{\rm S}K^0_{\rm S}$ decays

- A basic offline selection has been developed.
- The baseline selection must be reoptimised.
- A signal peak is still not observed.

Projected statistical uncertainty of $A_{CP}(D^0 \rightarrow K^0_S K^0_S)$

Conclusion

- Performed a measurement of $A_{CP}(D^0 \rightarrow K^0_S K^0_S)$ using 2015+2016 data.
- Selection criteria inherited from LHCb-ANA-2017-XXX. (Pisa Group)
- Developed and fitted a model to data.
- Fitting and blinding method validated with pseudo-experiments.
- Looked at the 2017 data for the first time and found a factor \approx 2 improvement in yields/integrated luminosity for LL and LD candidates (where a factor 3.5-5 was expected).
- Confirmed that the bug affecting the DD selection is resolved, but no signal yet observed.
- Still to do:
 - I Reoptimize the selection for LL/LD candidates for the 2017 data sample.
 - II Improve the efficiency of HIt2 and develop a new selection criteria for DD candidates.

く ロ ト く 同 ト く ヨ ト く ヨ ト 二 ヨ

Kamil Fischer

August 29, 2017 17 / 26

2

<ロト < 回 ト < 三 ト < 三 ト

Data set and selection

Decay Tree Fitter (DTF)

- (I) Primary vertex (PV) constraint on the D^* candidate.
- (II) Constraint on the mass of the kaon daughters $m(K_S^0)$.

Baseline selection LL:

Selection
Preliminary selection
L0: D0_L0Hadron_TOS or DS_L0Global_TIS
HLT1: KS_Hlt1TrackMVA_TOS
Fiducial cuts
Prompt-peaking background
$[\log(\chi^2_{FD}(K^0_{s_1})) - 10]^2 + [\log(\chi^2_{FD}(K^0_{s_2})) - 10]^2 < 1$
$ m(K^0_{\rm S1-2}) - 497.6 < 10.5 {\rm MeV}/c^2$
Secondaries
$\log(\chi^2_{\rm IP}(D^0)) < 3$
$\log(\chi^2_{SV-PV}(D^{*\pm})) < 2.5$
$\log(\chi^2_{\rm IP}(\pi_{\rm tag})) < 2$
Combinatorial background
$p_T(\pi_{\rm tag}) > 200 \; {\rm MeV}/c^2$
$p_T(D^0) > 2000 \text{ MeV}/c^2$
$\log_{10}(\mathcal{P}(\chi^2_{vtx}(D^{*\pm}))) > -4$
$\chi^2_{SV-PV}(D^0) > 3$

Baseline selection LD:

Calastian
Selection
Preliminary selection
LO: DO_LOHadron_TOS or DS_LOGlobal_TIS
Fiducial cuts
Prompt-peaking background
$\log(\chi^2_{FD}(K^0_{SL})) > 2.5$
$ m(K_{\rm SL}^0) - 497.6 < 10.5 \ {\rm MeV}/c^2$
$ m(K_{\rm sD}^0) - 497.6 < 15 {\rm MeV}/c^2$
Secondaries
$\log(\chi^2_{\rm IP}(D^0)) < 4$
$\log(\chi^2_{SV-PV}(D^{*\pm})) < 2$
$\log(\chi^2_{\rm IP}(\pi_{\rm tag})) < 3.5$
Combinatorial background
$p_T(\pi_{\rm tag}) > 250 \ {\rm MeV}/c^2$
$p_T(D^0) > 3500 \text{ MeV}/c^2$
$\operatorname{Log}_{10}(\operatorname{Prob}(\chi^2_{vtx}(D^{*\pm}), \operatorname{ndof})) > -2$
$p_T(K^0_{\rm sD}) > 950 {\rm MeV}/c^2$
$p_T(K_{\rm sL}^0) > 750 {\rm MeV}/c^2$
$\cos(\theta_{DIRA}(K^0_{sD})) > 0.999992$

Fit methodology

- The signal candidates are extracted by fitting a normalized gaussian to the Δm distribution.
- The background is extracted by fitting an empirical function:

$$(1 - e^{\frac{\Delta m - m_{th}}{c}})(\frac{\Delta m}{m_{th}})^a + b(\frac{\Delta m}{m_{th}} - 1)$$
(3)

- The D^0 and \overline{D}^0 candidates are fit with an identical shape.
- A single background distribution is simultaneously fit for D^0 and \overline{D}^0 candidates with common parameters *a* (set to 0), *b* and *c*.

Fit validation

- D⁰ → K⁰_SK⁰_S and D
 ⁰ → K⁰_SK⁰_S samples are generated. The number of generated events in each sample is chosen such that a particular value of A_{raw} is obtained.
- The asymmetry values are selected in the range [-0.1,0.1] and a poissonian fluctuation is added to the number of generated events.
- The individual signal and background regions are generated separately, the total pdf is then simultaneously fit to the two samples.
- A total of 500 samples is generated for each value of the asymmetry. (MC seed is set to 50)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 $D^0/\bar{D}^0 \to K^0_S K^0_S$ decays

Kamil Fischer

Generated A ^{raw}	Reconstru	cted value	Pull		
	μ	σ	μ	σ	
0.00	0.001 ± 0.002	0.040 ± 0.001	0.026 ± 0.047	0.995 ± 0.034	
+0.01	0.009 ± 0.002	0.041 ± 0.001	-0.034 ± 0.046	0.997 ± 0.034	
+0.02	0.019 ± 0.002	0.040 ± 0.002	-0.081 ± 0.047	1.008 ± 0.037	
+0.03	0.029 ± 0.002	0.039 ± 0.001	-0.055 ± 0.044	0.959 ± 0.032	
+0.05	0.049 ± 0.002	0.039 ± 0.001	-0.045 ± 0.044	0.955 ± 0.030	
+0.10	0.099 ± 0.002	0.043 ± 0.001	-0.016 ± 0.047	1.028 ± 0.033	
-0.01	-0.01 ± 0.002	0.041 ± 0.001	0.022 ± 0.045	0.975 ± 0.037	
-0.02	-0.024 ± 0.002	0.039 ± 0.001	-0.082 ± 0.046	0.978 ± 0.033	
-0.03	-0.028 ± 0.002	0.040 ± 0.001	0.037 ± 0.045	0.984 ± 0.035	
-0.05	-0.052 ± 0.002	0.040 ± 0.001	-0.070 ± 0.045	0.958 ± 0.031	
-0.10	-0.10 ± 0.002	0.042 ± 0.002	0.06 ± 0.048	1.006 ± 0.038	

 $D^0/ar{D}^0 o K^0_S K^0_S$ decays

Monte Carlo simulation of Araw

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ● 臣 ● のへで

Calculating raw asymmetry

 The number of signal events is parameterised in terms of total number of candidates (N) and asymmetry:

$$N_{sig}^{\pm} = \frac{N(1 \pm A_{raw})}{2} \tag{4}$$

• The asymmetries are **blinded** using a randomly generated offset from a uniform distribution [0,1] with a preset seed.

 $D^0/\bar{D}^0 \rightarrow K^0_S K^0_S$ decays

• This is performed by shifting the parameter such that:

$$N_{sig}^{\pm} = \frac{N(1 \pm (A_{raw} + \delta))}{2}$$
(5)

Validation of blinding technique

- New samples are generated using the blinded signal distribution.
- The mean of the A_{raw} distribution corresponds to the value of the blinding offset → the blinding method is validated.

 $D^0/\bar{D}^0 \to K^0_S K^0_S$ decays

3 🕨 🗸 3

HIt2 Selection

OLD (2015 + 2016):

NEW (2017):

Variable	$D^0 \rightarrow K^0_{SL} K^0_{SL}$	$D^0 \rightarrow K^0_{SL} K^0_{SD}$ $D^0 \rightarrow K^0_{SD} K^0_{SD}$		Variable	$D^0 \rightarrow K^0_{SL} K^0_{SL}$	$D^0 \rightarrow K^0_{SL} K^0_{SD}$ $D^0 \rightarrow K^0_{SD} K^0_{SD}$
$\begin{array}{c} \sum_{K_{0}^{0}} P_{T} \\ P_{T}(K_{0}^{0}) \\ \chi^{2}(K_{S}^{0}) \\ \chi^{2}(D_{FD}^{0}) \\ m(K_{0}^{0}K_{S}^{0}) \\ \chi^{2}_{etx}/ndf(D^{0}) \\ \theta_{DIRA}(D^{0}) \\ \tau(D^{0}) \end{array}$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			$\begin{array}{c} \sum_{K_{s}^{0}} P_{T} \\ P_{T}(K_{s}^{0}) \\ \chi^{2}(D_{FD}^{2}) \\ \chi^{2}(D_{FD}^{2}) \\ \pi(K_{s}^{0}K_{s}^{0}) \\ \chi^{2}_{vtx}/ndf(D^{0}) \\ \theta_{DIRA}(D^{0}) \\ \tau(D^{0}) \end{array}$	> 1500 MeV/c > 500 MeV/c > 4 > 5	> 1500 MeV/c > 500 MeV/c > 4 > 5 $[1775, 1505] MeV/c^2$ < 10 < 34.6 mrad > -999 ps
$ \begin{array}{c} m(D^0\pi_{tag}) - m(K^0_SK^0_S) \\ P_T(\pi_{tag}) \\ P_{ghost})\pi_{tag}) \\ \chi^2/ndf(\pi_{tag}) \\ \chi^2_{stx}/ndf(D^*) \\ Hlt1 \end{array} $	π_{hag}) $-m(K_{a}^{a}K_{b}^{a})$ $\in [130, 160] MeV/c^{2}$ $P_{T}(\pi_{hag})$ $> MeV/c$ $P_{absult}(\pi_{hag})$ < 0.4 $\tilde{c}^{2}/nd(\pi_{hag})$ < 3 $\sigma_{ab}/nd(D')$ Q^{2} is Hth . Track- $Decision 5/7OS$		m	$t(D^0 \pi_{tag}) - m(K_S^0 K_S^0) \\ P_T(\pi_{tag}) \\ P_{ghost} n_{tag}) \\ \chi^2 / ndf(\pi_{tag}) \\ \chi^2_{vtx} / ndf(D^*) \\ Hlt1$	$\in [-70, 170] MeV/c^2$ > MeV/c < 0.4 < 3 < 25 No requirement	

2

(日)(四)(日)(日)(日)

Basic offline selection for DD candidates

Selection

Preliminary selection L0: D0_L0Hadron_TOS or DS_L0Global_TIS HLT1: No Requirement Fiducial Cuts

Prompt-peaking background $\log(\chi^2_{FD}(K^0_S(L))) > 2.5$ $|m(K^0_S - 497.6)| < 17 \ MeV/c^2$ $|m(D^0) - 1865| < 20 \ MeV/c^2$

Secondaries $\log(\chi^2_{IP}(D^0)) < 4$ $\log(\chi^2_{FD}(D^*)) < 3$ $\log(\chi^2_{IP}(\pi_{tag})) < 3.5$

 $\begin{array}{l} \mbox{Combinatorial background} \\ P_{T}(\pi_{tag}) > 250 \; MeV/c \\ P_{T}(D^{0}) > 3000 \; MeV/c \\ P_{T}(K_{S1}^{0}) > 950 \; MeV/c \; or \; P_{T}(K_{S2}^{0}) > 950 \; MeV/c \end{array}$

3

< D > < A < > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > < B > <