Comparison of $B_s^0 \rightarrow D_s^- \mu^+ \nu_\mu$ and $B^0 \rightarrow D^- \mu^+ \nu_\mu$ to test SU(3) symmetry

Veronica Sølund Kirsebom

Summer Student Project at LHCb

August 29, 2017

Supervisors: Melody Ravonel Salzgeber & Mirco Dorigo

About me

- From Denmark
- Studying at Niels Bohr Institute in Copenhagen
- Finishing my master thesis in atroparticle physics

Outline

Introduction

Analysis strategy

Results: $B^0 \rightarrow D^- \mu^+ \nu_\mu$ $B^0_s \rightarrow D^-_s \mu^+ \nu_\mu$ Comparison of $B^0 \rightarrow D^- \mu^+ \nu_\mu$ and $B^0_s \rightarrow D^-_s \mu^+ \nu_\mu$

Conclusion and outlook

Studying semileptonic $B^0_{(s)} o D^-_{(s)} \mu^+ \nu_{\mu}$ decays

* Purpose: test SU(3) symmetry by comparing the form factors (FFs) for $B_s^0 \rightarrow D_s^-$ and $B^0 \rightarrow D^-$.

Form Factors

 FF accounts for the hadronic part of the decay (non-perturbative QCD)

SU(3) symmetry in B_s and B^0 decays

FF useful input for other studies $(f_s/f_d \text{ from hadronic decays})$.

Measuring FF in semileptonic decays

* The FF is a function of the transfer momentum of the W-boson q^2 and is parametrised as an expansion of the parameter ρ^2 [¹].

Challenge:

- \circ Cannot reconstruct q^2 due to missing u_μ
- Alternate approach: variable $P_{\perp}(D)$
 - $\circ~$ Correlated with q^2
 - Fully reconstructed, good resolution

¹M. Neubert, Heavy-quark symmetry, Physics Reports 245 (1994)

$P_{\perp}(D)$ dependence on FF

MC generated with different FF changes q^2 and $P_{\perp}(D)$ distributions \rightarrow

Analysis goal and strategy

Goal:

* Determine the $P_{\perp}(D)$ distribution for $B_s^0 \rightarrow D_s^- \mu^+ \nu_{\mu}$ and $B^0 \rightarrow D^- \mu^+ \nu_{\mu}$ to compare them for a SU(3) test

Strategy:

- \circ Split data sample in bins of the variable $P_{\perp}(D)$
- Perform a fit to the corrected B mass in each bin to obtain signal yields and thereby the distributions:

*
$$P_{\perp}(D)(B_{s}^{0} \to D_{s}^{-}\mu^{+}\nu_{\mu})$$

* $P_{\perp}(D)(B^{0} \to D^{-}\mu^{+}\nu_{\mu})$

• Finally compute the ratio: $P_{\perp}(D)(B_s^0 \rightarrow D_s^- \mu^+ \nu_{\mu})/P_{\perp}(D)(B^0 \rightarrow D^- \mu^+ \nu_{\mu})$

Corrected B mass fit to the data

LHCb data Run 1, selection inherited from B_s^0 and D_s lifetime measurement [²].

Corrected B mass variable:

$$m_{corr} = p_{\perp,D\mu} + \sqrt{m_{D\mu}^2 + p_{\perp,D\mu}^2} \tag{1}$$

- $\circ~$ Compensates for part of the missing momentum
- $\circ~$ Makes the B mass distribution more narrow

Binned least-squares fit:

- * Purpose: discriminate signal from backgrounds and determine the signal composition
- Mass shapes for signal and backgrounds are obtained from both MC and control sample of data [²]

²LHCb-ANA-2016-068, March 7, 2017

$B^0 \rightarrow D^- \mu^+ \nu_\mu$

Corrected mass fit for $B^0 \rightarrow D^- \mu^+ \nu_\mu$

Determine $P_{\perp}(D)(B^0 \rightarrow D^- \mu^+ \nu_{\mu})$

Data sample is split into 6 bins of $P_{\perp}(D)$:

- 1) 0-812 MeV
- 2) 812-1155 MeV
- 3) 1155-1460 MeV
- 4) 1460-1795 MeV
- 5) 1795-2150 MeV
- 6) 2150-4500 MeV

Preliminary $P_{\perp}(D)$ distribution for $B^0 ightarrow D^- \mu^+ u_{\mu}$

Remarks:

Good agreement between Data and MC (FF from known world average values $[^3]$) validates the method

 $\circ \chi^2 = 4.90/5$

 \circ prob = 0.43

 $^{^3\}mbox{Y}.$ Amhis et al.," Averages of b-hadron, c-hadron, and tau-lepton properties as of summer 2016"

 $B_s^0 \to D_s^- \mu^+ \nu_\mu$

Corrected mass fit for $B_s^0 \rightarrow D_s^- \mu^+ \nu_\mu$

Preliminary $P_{\perp}(D)$ distribution for $B_s^0 \rightarrow D_s^- \mu^+ \nu_{\mu}$

Remarks

- MC is generated under assumption of perfect SU(3)
- Observe a tension in two bins (3 and 5)
- Need to include systematic uncertainties (eg. fitting assumptions)

Preliminary comparison of $P_{\perp}(D)(B_s^0 \to D_s^- \mu^+ \nu_{\mu})$ and $P_{\perp}(D)(B^0 \to D^- \mu^+ \nu_{\mu})$

Remarks:

More work needed for meaningful comparison.

Yet, first step into the test of SU(3) symmetry between $B_s^0 \rightarrow D_s^-$ and $B^0 \rightarrow D^-$ decays.

Next step:

Assess the sensitivity of the ratio of $P_{\perp}(D)$ distributions to the FF parameter ρ^2

Conclusion and outlook

Conclusion:

- $\star\,$ We made the first attempt to compare $B^0_s\to D^-_s\mu^+\nu_\mu$ and $B^0\to D^-\mu^+\nu_\mu$ decays.
- * We have proven that we can extract the $P_{\perp}(D)$ distribution of $B \rightarrow D \mu \nu$ decays and validates the method on the known B^0 sample.
- \star Still to finalise the work on the B^0_s case to make the test, but the method looks already promising.
- * Next steps: try to extract the FF parameter from the fit of the ratio of $P_{\perp}(D)$ distributions and to add run 2 data

Thank you for your attention!

Back-up slides

Mass fit in each bin for $B_s^0 \rightarrow D_s \mu \nu$

Fit Result for integrated sample of $B^0
ightarrow D \mu
u_{\mu}$

$$\chi^2/ndf = 109.6/88$$
 prob = 0.059
 $f_{B^0 → D^- \mu^+ \nu)} = (49.18 \pm 0.54)\%$
 $f_{(B^0 → D^{*-} \mu^+ \nu)} = (31.24 \pm 0.93)\%$

$$\begin{aligned} &f_{B^0 \to D^- \mu^+ \nu} = (49.16 \pm 0.54)\% \\ &f_{(B^0 \to D^{*-} \mu^+ \nu)} = (31.24 \pm 0.93)\% \\ &f_{(B^0 / B^+ \to D^- \mu^+ \nu X)} = (15.96 \pm 1.22)\% \\ &f_{(B^0 \to D^{*-} \tau^+ \nu X)} = (1.26 \pm 0.77)\% \\ &f_{(combinatorial)} = (2.37 \pm 0.07)\% \end{aligned}$$

³LHCb-ANA-2016-068, March 7, 2017

Corrected mass fit for $B^0_s
ightarrow D_s \mu
u$

$$\chi^{2}/ndf = 84.01/89$$

prob = 0.63

$$f_{(B_{s} \to D_{s}^{-}\mu^{+}\nu)} = (29.2 \pm 0.518)\%$$

$$f_{(B_{s} \to D_{s}^{*-}\mu^{+}\nu)} = (57.9 \pm 0.886)\%$$

$$f_{(B_{(s)} \to D_{(s)}^{**-}(D_{s})X)} = (3.14 \pm 0.717)\%$$

$$f_{(B_{(s)} \to D_{(s)}(K\mu\nu)/\tau\nu)} = (3.97 \pm 0.288)\%$$

$$f_{(combinatorial)} = (5.80 \pm 0.135)\%$$

⁸LHCb-ANA-2016-068, March 7, 2017

Stripping

Quantity	$K^+K^-\pi^-$ requirement (b2DsPhiPiMuXB2DMuNuX)	$K^+\pi^-\pi^-$ requirement (b2DpMuXB2DMuNuX)
ProbNNghost(μ , π , K)	< 0.5	< 0.5
Minimum IP $\chi^2(\mu, \pi, K)$	> 4.0	> 9.0
$p_T(\mu)$	> 600 MeV/c	> 800 MeV/c
$p(\mu)$	_	> 3.0 GeV/c
$\operatorname{PIDmu}(\mu)$	> 0.0	> 0.0
Track χ^2/ndf	-	< 4.0
$p_T(K), p_T(\pi)$	> 150 MeV/c	> 300 MeV/c
$p(K), p(\pi)$	> 1.5 GeV/c	> 2.0 GeV/c
$\operatorname{PIDK}(K)$	> 0.0	> 4.0
$PIDK(\pi)$	< 20.0	< 10.0
D daughters' $\sum p_T$	_	> 1.8 GeV/c
D vertex χ^2/ndf	< 8.0	< 6.0
$D \chi^2/\text{ndf}$ separation from PV	> 20	> 100
D DIRA	> 0.99	> 0.99
$m(D_{(s)}^{-})$	$\in [1789.620, 2048.490] \text{ MeV}/c^2$	$\in [1789.620, 1949.620] \text{ MeV}/c^2$
$m(K^{+}K^{-})$	$\in [979.455, 1059.455] \text{ MeV}/c^2$	_
B vertex χ^2/ndf	< 20.0	< 6.0
B DIRA	> 0.99	> 0.999
$m(D_{(s)}\mu)$	$\in [0.0, 1000.0] \text{ GeV}/c^2$	$\in [2.5, 6.0] \text{ GeV}/c^2$
$v_z(D) - v_z(B)$	> -0.3 mm	> 0.0 mm

Table 1: Summary of stripping selections for (left) $K^+K^-\pi^-$ and (right) $K^+\pi^-\pi^-$ samples.

Offline selection

Quantity	$K^+K^-\pi^-$ requirement	$K^+\pi^-\pi^-$ requirement	
$\operatorname{ProbNNk}(K)$	> 0.2	> 0.2	
$\operatorname{ProbNNpi}(\pi)$	> 0.2	> 0.5	
$\operatorname{ProbNNmu}(\mu)$	> 0.2	> 0.2	
p(K)	> 2 GeV/c	$> 3 \mathrm{GeV}/c$	
$p(\pi)$	> 2 GeV/c	$> 5 \mathrm{GeV}$	
$p_T(K), \ p_T(\pi)$	$> 300 \mathrm{MeV}/c$	$> 500 \mathrm{MeV}/c$	
$D^{-}_{(s)}$ vertex χ^2/ndf	< 6.0	< 6.0	
$m(K^+K^-)$	$\in [1.008, 1.032] \text{ GeV}/c^2$	_	
$p_{\perp}(D)[\text{ MeV}/c]$	$> 1500 + 1.1 \times (m_{\rm cor}[{ m MeV}/c^2] - 4500)$		
t_D	$> 0.1\mathrm{ps}$		
$m_{ m corr}$	$[3000, 8500] { m MeV}/c^2$		
$m(D^{(s)})$	$ \begin{array}{l} \in [1.85, 1.89] \ {\rm GeV}\!/c^2 \ {\rm for} \ B^0 \\ \in [1.94, 2.00] \ {\rm GeV}\!/c^2 \ {\rm for} \ B^0_s \end{array} $	$\in [1.85, 1.89] \text{ GeV}/c^2$	
	$> 3.1 \mathrm{GeV}/c^2$	$> 3.1 {\rm GeV}/c^2$	
$m(D^{-}_{(s)}\mu^{+})$	$\notin [5.200, 5.400] \text{ GeV}/c^2 \text{ (for } B^0)$	\notin [5.200, 5.400] GeV/ c^2	
(-)	$\notin [5.280, 5.480] \text{ GeV}/c^2 \text{ (for } B_s^0)$		
(+ -)	$\notin [3.040, 3.160] \text{ GeV}/c^2$	\notin [3.040, 3.160] GeV/ c^2	
$m(\mu^+\mu^-)$	\notin [3.635, 3.735] GeV/ c^2	\notin [3.635, 3.735] GeV/ c^2	
$m(Kp\pi)$	$\not\in [2.260, 2.310]~\text{GeV}/c^2$	$\not\in [2.260, 2.310]~\text{GeV}/c^2$	

Table 2: Summary of offline selection criteria for the (left) $K^+K^-\pi^-$ and (right) $K^+\pi^-\pi^-$ samples. See text for motivations for the various mass vetoes.

Selection in 2dim plane of $P_{\perp}(D)$ vs. m_{corr}

Distribution of the classes of simulated events in the two-dimensional plane. The region accepted in our selection is below the dashed line.^[4]

 $^{^{3}} https://cds.cern.ch/record/2263774/files/Supplementary-LHCb-PAPER-2017-004.pdf$

Data Samples

- $\circ~$ Collected by LHCb in Run1 at $\sqrt{s}=7-8~\text{TeV}$ and L=3 $\textit{fb}^{-1}.$
- $\circ\,$ Samples and selection inherited from B^0_s and D_s lifetime measurement. $[^5]$
- $\circ\,$ Same sign data (SS) are $D^\pm\mu^\pm$ combinations used to model combinatorial background.

Data samples for OS and SS

After selection:

- Opposite sign candidates (OS): $N_{OS}(B^0 \rightarrow K\pi\pi) = 2,611,001$ $N_{OS}(B^0_s \rightarrow KK\pi) = 467,951$
- Same sign candidates (SS): $N_{SS}(B^0 \rightarrow K\pi\pi) = 28,767$ $N_{SS}(B^0_s \rightarrow KK\pi) = 14,228$

Simulated signal and background contribution for B0 and Bs

Sample	Event type	Candidates after selection	Efficiency $[10^{-4}]$
$B_s^0 \rightarrow D_s^- (\rightarrow K^+ K^- \pi^-) \mu^+ \nu X$	13774002	566419	7.05
$B^0 \rightarrow D^- (\rightarrow K^+ K^- \pi^-) \mu^+ \nu X$	11874022	290353	3.95
$B^0 \to D^- (\to K^+ \pi^- \pi^-) \mu^+ \nu X$	11874042	149131	8.49
$B_s^0 \to D_s^{(*)-} D_s^{(*)+}$	13873201	3037	1.98
$\Lambda_b^0 \to \Lambda_c^+ D_s^{(*)-}(\pi^0)$	15894301	3330	1.06
$B^+ \to D^{(*)0} D_s^{(*)+}$	12875601	2071	1.35
$B^0 \to D^{(*)-} D_s^{(*)+}$	11876001	1780	1.16
$B^- \to D_0^{*0}(2400) (\to D_s^{(*)+} K^+) \mu^- \nu$	12775001	6447	2.23
$\overline{B}{}^0 \to D_0^{*-}(2400) (\to D_s^{(*)+} K_s^0) \mu^- \nu$	11774001	6236	2.09
$B_s^0 \to D^0 D_s K$	13796000	4636	1.61
$B^+ \rightarrow D^- (\rightarrow K^+ K^- \pi^-) \pi^+ \mu^+ \nu X$	12875011	44734	2.25
$B^+ \to D^- (\to K^+ \pi^- \pi^-) \pi^+ \mu^+ \nu X$	12875031	18226	4.12

Table 3: Samples of simulated data used in the analysis. Signal components are on the top, expected physics backgrounds for the B_s^0 sample are in the middle, and expected B^+ backgrounds to the B^0 samples are at the bottom.

Simulated signal mixture for B0 and Bs

B [%] 2.1000 5.1000	Decay model HQET2 1.17 1.074
$2.1000 \\ 5.1000$	HQET2 1.17 1.074
5.1000	
	HQET2 1.16 1.370 0.845 0.921
0.7000	ISGW2
0.4000	ISGW2
0.4000	ISGW2
0.138	ISGW2
0.2770	ISGW2
0.0310	ISGW2
0.0310	ISGW2
2.1700	HQET2 1.18 1.074
1.6218	HQET 1.20 1.426 0.818 0.908
0.1848	ISGW2
0.1652	ISGW2
0.1436	ISGW2
0.1197	PHSP
0.0902	PHSP
0.0616	ISGW2
0.0294	PHSP
0.0237	PHSP
0.0198	GOITY_ROBERTS
0.0149	GOITY_ROBERTS
0.1910	ISGW2
0.0841	ISGW2
0.0110	ISGW2
0.0087	ISGW2
0.0069	ISGW2
0.0053	ISGW2
	$\begin{array}{c} 5.1000\\ 0.7000\\ 0.4000\\ 0.4000\\ 0.4000\\ 0.38\\ 0.2770\\ 0.0310\\ 0.0310\\ 0.21700\\ 1.652\\ 0.1438\\ 0.1652\\ 0.1438\\ 0.1652\\ 0.1498\\ 0.0902\\ 0.0616\\ 0.0294\\ 0.0237\\ 0.0618\\ 0.0149\\ 0.0237\\ 0.0198\\ 0.0149\\ 0.0110\\ 0.0087\\ 0.0087\\ 0.0063\\ \end{array}$

Table 4: Processes contributing to the simulated samples of inclusive (top) $B_s^0 \rightarrow D_s^- \mu^- \nu X$ and (bottom) $B^0 \rightarrow D^- \mu^+ \nu X$ decays. Branching fractions and decay models used in generation are also reported.

Simulated signal and background in categories

Category	Decay	\mathcal{B} [10 ⁻⁴]	$\epsilon_{ m bkg}/\epsilon_{ m sig}$	$f_{q/\Lambda}/f_d$	$f_{\rm bkg}/f_{KK\pi}~[\%]$
$B^{+}(K^{+}K^{-}\pi^{-})$	$B^+ \rightarrow D^- \mu^+ X$	97 ± 16	0.569 ± 0.006	1	6.02 ± 1.12
$B^{+} (K^{+}\pi^{-}\pi^{-})$	$B^+ \to D^- \mu^+ X$	97 ± 16	0.485 ± 0.005	1	5.12 ± 0.95
	$B^0 \rightarrow D^- D^+_{(s)} X$	4.60 ± 0.67	0.174 ± 0.004	1	0.09 ± 0.02
$B \rightarrow DD$	$B^0 \rightarrow D^- D^+ X$	0.14 ± 0.01	0.174 ± 0.004	1	< 0.01
	$B_s^0 \rightarrow D^- D^+$	0.15 ± 0.04	0.281 ± 0.006	0.26 ± 0.02	< 0.01
	$B^- ightarrow D^- D^0$	0.10 ± 0.01	0.197 ± 0.005	1	< 0.01
40	$\Lambda_b^0 \to \Lambda_c^+ D^- X$	0.09 ± 0.04	0.156 ± 0.003	0.60 ± 0.08	< 0.01
71 _b	$\Lambda_b^0 ightarrow D^- n \mu^+ \nu$	-	-	-	-

Table 7: Background contributions for the $B^0 \to D^-(\to K^+K^-\pi^-)\mu^+\nu X$ and $B^0 \to D^-(\to K^+\pi^-\pi^-)\mu^+\nu X$ samples.

Category	Decay	\mathcal{B} $[10^{-4}]$	$\epsilon_{ m bkg}/\epsilon_{ m sig}$	$f_{q/\Lambda}/f_s$	$f_{\rm bkg}/f_{\rm sig}~[\%]$
	$B^0 \to D^{(*)-}D_s^{(*)+}$	12.74 ± 1.60	0.174 ± 0.004	3.86 ± 0.22	1.08 ± 0.36
$B \rightarrow DD$	$B^+ \to D^{(*)0} D_s^{(*)+}$	11.36 ± 1.29	0.197 ± 0.005	3.86 ± 0.22	1.09 ± 0.36
	$B_s^0 \to D_s^{(*)-} D_s^{(*)+}$	12.17 ± 3.93	0.281 ± 0.006	1	0.43 ± 0.19
	$B^- \to D_s^{(*)+} K^- \mu^- X$	6.10 ± 1.00	0.319 ± 0.005	3.86 ± 0.22	0.95 ± 0.33
$B \rightarrow D K \mu \nu$	$B^0 \rightarrow D_s^{(*)-} K_S^0 \mu^+ X$	6.10 ± 1.00	0.299 ± 0.005	3.86 ± 0.22	0.89 ± 0.31
	$B_s^0 \rightarrow D^0 D_s^- K^+$	0.24 ± 0.09	0.236 ± 0.004	1	0.01 ± 0.01
$D \rightarrow DDK$	$B^0_s \to D^- D^+_s K^0$	0.17 ± 0.06	0.236 ± 0.004	1	0.01 ± 0.01
40	$\Lambda_b^0 \rightarrow \Lambda_c^+ D_s^{(*)+}(\pi^0)$	4.31 ± 1.69	0.156 ± 0.003	2.34 ± 0.31	0.20 ± 0.10
· • b	$\Lambda_b^0 \rightarrow D_s^+ \Lambda^0 \mu^- \nu$	-	-	-	-

Table 6: Background contributions for the $B_s^0 \to D_s^-(\to K^+K^-\pi^-)\mu^+\nu X$ sample grouped into four main categories. The signal branching fraction, $\mathcal{B}(B_s^0 \to D_s^-\ell^+\nu X) = (7.9 \pm 2.4)\%$, is the dominant source of uncertainty for the estimated relative fractions.

Motivation for measuring SU(3) in $B_0 \rightarrow D^-$ and $B^0_s \rightarrow D^-_s$

Γ

$\circ~$ Uncertainties on fs/fd using semileptonic and hadronic decays: $[^{6}]$

Table 3: Uncorrelated uncertainties of the two LHCb measurements of f_{+}/f_{R} (3,5]. The particle identification uncertainty present in both measurements is considered fully uncorrelated since the semileptonic measurement was performed analyzing an integrated luminosity of $3pb^{-1}$ acquired in 2010, while the hadronic measurement was performed analyzing an integrated luminosity of $1b^{-1}$ acquired in 2011.

Source	Semileptonic (%)	Hadronic(%)
Statistical	3.0	1.7
SU(3) breaking and form factors	-	8.8
Bin dependent uncertainty	1.0	-
Semileptonic decay model	3.0	-
Backgrounds	2.0	-
Tracking efficiency	2.0	-
$\mathcal{B}(\overline{B}^0_* \rightarrow D^0 K^+ X \mu \overline{\nu}_{\mu})$	+4.1	-
$\mathcal{B}((B^-/\overline{B}^0) \rightarrow D_s^+ K X \mu \overline{\nu}_{\mu})$	2.0	-
Detector acceptance		
and reconstruction	-	0.7
Hardware trigger efficiency	-	2.0
Offline selection	-	1.1
Boosted decision tree cut	-	1.0
Particle identification	1.5	1.5
Combinatorial background	-	1.0
Signal shape (tails)	-	0.6
Signal shape (core)	-	1.0
Total	$^{+7.1}_{-5.9}$	± 9.6

* Result using hadronic decays: $fs/fd = 0.259 \pm 0.015$.

 $^4 https://cds.cern.ch/record/1559262/files/LHCb-CONF-2013-011.pdf?version=1$