

# Results of RICH CLARO calibration and threshold scans

Valeriia Lukashenko

(valeriia.lukashenko@cern.ch)

Supervisors: Gabriele Simi, Carmelo d'Ambrosio, Stefano Gallorini, Anna Lupato

28/08/2018

#### Replace photon detectors and electronics

### **RICH Upgrade**

- LHC Upgrade 2019: <u>higher</u> <u>luminosity</u>  $(2 \cdot 10^{33} cm^{-2} s^{-1})$  and <u>higher rates</u> (40 MHz)
- LHCb RICH1 and RICH2 need
  upgrade
- RICH-Upgrade:
  - New Photodetectors : Multi-anode PhotoMultiplier Tubes (MaPMT)
  - New read-out: CLARO board



RICH-1 schematic picture

#### **MaPMT**: 1inch X 1inch, 64 channels

- Higher resolution
- Low cross-talk
- Good time response
- Hamamatsu R13742

CLARO:

- digital output: 1 or 0
- 40 MHz counting frequency
- recovery time ~ 25 ns
- 64 threshold levels,
- tolerates up to 10 kGy
- 640 fF capacitor integrated for calibration.

**FPGA** 

\*arXiv:[physics.ins-det]

1610.10006v1

Elementary cell (EC) EC-R type to be used in RICH 1 + inner RICH-2

S-Curve EC3 PMT1 Ch 64



Step 1: for a given threshold value known amount of charge is injected to CLARO (DAC scan) **S-curve:** if injected charge is **lower than threshold** value the CLARO output is **0**; if it is **higher** the CLARO output is **1**.

EC0 PMT0 Ch1 Charge, Me Attenuation: 3 Offset: 1 2.6  $\Delta$  Th = 0.171 Me<sup>-</sup> |Th(0)| = 4.579 Me 2.4 2.2 1.8 1.6 35 36 37 38 39 40 42 Threshold code

Step 1: for a given threshold value known amount of charge is injected to CLARO (DAC scan)

Step 2: find <u>transition</u> <u>point</u> from 0 to 1, using S-curve. Find the <u>calibration curve</u> for each channel. <u>S-curve</u>: if injected charge is **lower than threshold** value the CLARO output is **0**; if it is **higher** the CLARO output is **1**.

**Calibration curve:** relation between threshold code and amount of charge that corresponds to transition point.

Transition point in DAC counts is transferred to charge value using:  $Charge = 15.6ke^{-} \cdot DACcode$ 



Step 1: for a given threshold value known amount of charge is injected to CLARO (DAC scan)

Step 2: find <u>transition</u> <u>point</u> from 0 to 1, using S-curve. Find the <u>calibration curve</u> for each channel.

Step 3: perform a threshold scan. <u>S-curve:</u> if injected charge is **lower than threshold** value the CLARO output is **0**; if it is **higher** the CLARO output is **1**.

**Calibration curve:** relation between threshold code and amount of charge that corresponds to transition point.

<u>Threshold scan:</u> by illuminating each channel number of registered events at each threshold is recorded

### Final goal (and step 4)

#### After calibration:

- 1. Characterize PMTs using CLARO set-up in SysLab.
- 2. Compare PMT characteristics (i.e. gain) with measurements taken during quality and insurance of MaPMTs with different read-out based on measurement of the pulse height.
- 3. Find the CLARO threshold.
- 4. Results will be used for the RICH operation during the Run III.



#### Transition point

Two ways of finding the transition point:

1. Middle point calculation (MP)



#### 2. From fit



#### Noisy channels

S-Curve EC2 PMT1 Ch 13



- Fit has high  $\chi^2$  value can be used to find the noisy channels
- Every channel that has  $\chi^2 > 2.5 \cdot \chi^2_{max}$  is noisy
- If the noisy channel is detected:
  - Use middle point calculation for transition point

#### EC0\_PMT0\_Ch1

#### Calibration results

Example of calibration of one of the channels.

Errors on x-axis: 0.5 threshold code.



#### Calibration results: distribution of parameters



Attenuation: attenuation of signal in  $2^{att}$  times.

#### Threshold scan

#### Single photon spectra = derivative of threshold scan



#### Threshold scans fit: MaPMTQ&A model



 $x_p$  is pedestal  $\mu$  is occupancy  $P_{miss}$  is gain missed in the valley \*Occupancy: rate of getting one photoelectron signal \*\* Counts are normalized to the number of triggers

#### Threshold scans: Gain distribution at different voltage

Mean Gain TT A Attenuation 3 Offset 1 Board 13



Voltage: Voltage applied to the channel cathode

# Threshold scans: Occupancy distribution different voltage



Distribution of occupancy for 64 channels of PMT TT A

#### Conclusions

- Calibration of the CLARO has been done in order to properly find threshold and PMT characteristics;
- Two methods of finding the calibration parameters are used with Erf fit as the main method.
- Threshold scans were fitted and MaPMTs parameters were estimated, i.e. gain, occupancy.
- Gain and occupancy dependence on cathode voltage follow the expectations.

#### Future plans

- Cross-talk implementation into the MaPMTQ&A fit model;
- Compare measured PMT parameters with ones measured in the Q&A (using another read-out board)
- Define the proper CLARO threshold value for each channel using the fit information.

### Thank you for your attention

### **BACK UP SLIDES**



#### S-Curve EC0 PMT0 Ch 6

60

70 DAC counts

50

nnels

EC 0 PMT 0 All Channels before preselection

21



### EC 0 PMT 0 All Channels before preselection

nnels

#### DAC scans and preselection of channels



before preselection

#### DAC scans and preselection of channels



The data was taken in July-August 2018 in SysLab using the RICH prototype with help of Giovanni Cavallero, Tonino Sergi et al.

EC 0 PMT 0 All Channels before preselection

#### **PMTs** configuration





OR

Both boards

#### Chi2 cut on good/noisy channels



Offset 1

27

#### More calibration results

EC0\_PMT0\_Ch7





#### Error on transition point



Errors calculated from fit are smaller then values from middle point error calculation. Using fit as the main method to find the transition point.

#### Calibration result: compare MP and Erf fit; Board 13



### Calibration result: compare MP and Erf fit errors; Board 13



### Calibration results (offset 1) Board 13



Averaged over all channels results on  $\Delta$ Th and |Th(0)| for different attenuation

#### Threshold scans: derivative



#### Threshold scans: Problems

• Calibration should lead to pedestal situated at **0 ke-**, **BUT** 

Board 13 - around 100-200:ke-; Board 06 - around 500-600 ke-.

Reasons: still not perfect calibration of channels? Noisy channels?

• No cross-talk implemented in the model - in process

#### Threshold scans: Gain distributions Board 13 TT A

Mean Gain TT A Offset:1 Attenuation: 3 Board 13

Mean Gain TT A Offset:1 Attenuation: 3 Board 06



Mean gain for TT A channels at different voltages





Main Gain Offset:1 Attenuation: 3 900 V Board 13

Main Occupancy Offset:1 Attenuation: 3 1000 V Board 13

Main Occupancy Offset:1 Attenuation: 3 1000 V Board 06



Main Occupancy Offset:1 Attenuation: 3 1000 V Board 13

Main Occupancy Offset:1 Attenuation: 3 1000 V Board 06



Main Occupancy Offset:1 Attenuation: 3 900 V Board 13

Main Occupancy Offset:1 Attenuation: 3 900 V Board 06



Main Occupancy Offset:1 Attenuation: 3 900 V Board 13

Main Occupancy Offset:1 Attenuation: 3 900 V Board 06



High/low occupancy PMTs remain high/low occupancy.

## Threshold scans: Gain distribution different attenuation

Mean Gain TT A 900 V Board 13



Mean Gain TT A 900 V Board 06

### Threshold scans: Gain distribution differentattenuationMean Gain TT A 1000 V Board 13



#### Threshold scans: Occupancy distribution different attenuation



Mean Occupancy TT A 1000 V Board 06

0.5