TRACKING SYSTEM FOR **UPGRADE 2**

Alessandro Scarabotto

Supervisors: Lucia Grillo Chris Parkes

Thanks to: Irene Cortinovis

ABOUT ME

 Graduated from my Bachelor in Physics at the University of Ferrara (UNIFE) in July 2018

 Master student in a Double Degree Physics Program Paris Sud - Ferrara University

Università degli Studi di Ferrara

UPGRADE 2

<u>Upstream Tracker (UT)</u>

Replacing strips with Silicon
 pixels

<u>T-stations</u>

Hybrid Detector (Mighty Tracker):

- Inner Silicon Detector made of pixels (Inner Tracker and Middle Tracker)
 - Outside Scintillating
 Detector similar to
 Upgrade 1 solution

IT

Area per layer = 6 lots of $20x54 \text{ cm} = 0.7 \text{ m}^2$ (minus beam hole) Total Area = 6 layers of $0.7 \text{ m}^2 = 3.9 \text{ m}^2$ (minus beam hole)

IT+MT

Area per layer = 28 lots of $20x54 \text{ cm} = 3.0 \text{ m}^2$ (minus beam hole) Total Area = 6 layers of $0.7 \text{ m}^2 = 18.1 \text{ m}^2$ (minus beam hole)

TRACK MATCHING

Let's build our χ^2

Alessandro Scarabotto

5

Bending plane (xz) Let's build our χ^2

Alessandro Scarabotto

6

-

Let's build our χ^2

Non-bending plane (zy)

$$+ \frac{(ty_{pre} - ty_{meas})^2}{(\sigma_{ty})^2}$$

 $\chi^2 =$

Alessandro Scarabotto

8/27/19

8

Let's build our χ^2

Alessandro Scarabotto

EFFICIENCY AND GHOST RATE

Find the match with minimum χ^2 and check if it's real or fake

Efficiency = $\frac{real match}{total long tracks}$

Ghost rate = $\frac{fake match}{all matched (real+fake)}$

FIRST RESULTS 20 events for long tracks coming from MC sample of B decays

Luminosity =
$$2 \times 10^{33} cm^{-2}s^{-1}$$

Upgrade 1

Luminosity = $1.5 \times 10^{34} cm^{-2}s^{-1}$ Upgrade 2

Efficiency 0.968 ± 0.005 **Ghost Rate** 0.127 ± 0.008

(Upgrade1 analysis valid only for long tracks with this algorithm conditions) **Efficiency** 0.932 ± 0.003 **Ghost Rate** 0.173 ± 0.004

Idea to reduce Ghost Rate: Use a threshold to cut very large χ^2

Alessandro Scarabotto

ADDING MOMENTUM TERM

MOMENTUM RESULTS 3-4 events for long tracks

<u>Upgrade 2</u>

Efficiency 0.940 ± 0.008 **Ghost Rate** 0.180 ± 0.011

Efficiency 0.958 ± 0.006 **Ghost Rate** 0.165 ± 0.011 **Efficiency** 0.979 ± 0.005 **Ghost Rate** 0.146 ± 0.010

Starting χ^2

Fake momentum Increasing Velo-UT with expected momentum resolution resolution to 1%

INSERT TIME TERM

Let's suppose a time resolution of 30ps

 $\sigma_{velo} = 30 \text{ ps}$ $\sigma_{Tstat} = 30 \text{ ps}$

$$t_{velo}^{PV} = t_{true}^{PV} + \sigma_{velo}$$

 $t_{Tstat}^{PV} = t_i^{PV} + \sigma_{Tstat}$

TIME RESULTS 3-4 events for long tracks

<u>Upgrade 2</u>

Efficiency 0.940 ± 0.008 **Ghost Rate** 0.180 ± 0.011 **Efficiency** 0.948 +- 0.007 **Ghost Rate** 0.173 +- 0.011

Starting χ^2

Fake time with 30 ps resolution

Efficiency 0.97 ± 0.005 **Ghost Rate** 0.154 ± 0.011 0.03 by taking out tracks not reaching the T-stations Fake time with 1 ps resolution

Limit of the approximation

CONCLUSIONS AND WAY AHEAD

<u>Upgrade 2</u>

<u>Upgrade 1</u>

First study of track matching with Upgrade 2 layout carried out. Results look promising.

Next steps:

- Use threshold to reject tracks not reaching the T-stations
- Improve the track model by matching curved Velo-UT and T-stat tracks

BACKUP

For more details on the results you can also look at some of the presentations that I gave during Upgrade 2 meetings on Wednesday mornings

CHI2 AND THRESHOLDS

20 events = 6710 long tracks

No Threshold **Efficiency:** 0.932 ± 0.003 **Ghost rate:** 0.173 ± 0.004

Threshold 97% **Efficiency:** 0.922 ± 0.003 **Ghost rate:** 0.158 ± 0.004

red 100x400--blue 80x80

PICKING THRESHOLD

20 events = 6710 long tracks

No Threshold **Efficiency:** 0.933 ± 0.003 **Ghost rate:** 0.171 ± 0.004

Threshold 99% **Efficiency:** 0.933 ± 0.003 **Ghost rate:** 0.167 ± 0.004 Threshold 98% **Efficiency:** 0.930 ± 0.003 **Ghost rate:** 0.161 ± 0.004

Threshold 97% **Efficiency:** 0.924 ± 0.003 **Ghost rate:** 0.157 ± 0.004

Threshold 96% **Efficiency:** 0.917 ± 0.003 **Ghost rate:** 0.151 ± 0.004

ADDING MOMENTUM TERM

⁵ Finding dependence ₅ on momentum of: • tx_{UT} - $tx_{velo} \rightarrow p_{pre}$

 $tx_{Tstat} - tx_{velo} \rightarrow p_{meas}$

Found functions for charge -1 and +1: Different bending

20 events for long tracks

<u>Upgrade 2</u>

Efficiency 0.932 ± 0.003 **Ghost Rate** 0.173 ± 0.004

Starting χ^2

Efficiency 0.942 +- 0.003 Ghost Rate 0.160 +- 0.004

 χ^2 with momentum term (by using my momentum estimate)

OCCUPANCY STUDIES

Alessandro Scarabotto