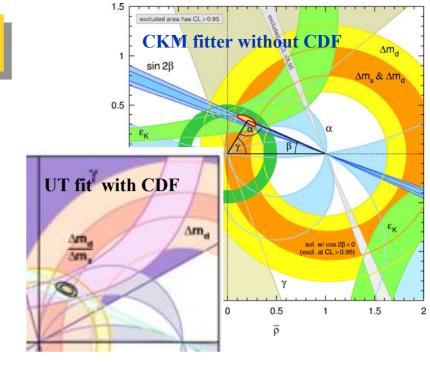
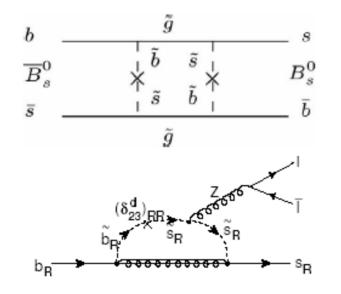

Flavor Physics and CP Violation at LHC

Vancouver, 9-12 April 2006

Andreas Schopper (CERN)


> Motivation


- **Experimental sensitivity**
- **Expected physics performance**
- Conclusion

Motivation

B-factories (BABAR&BELLE) are extremely successful in constraining the unitary triangle within the SM and Tevatron (D0&CDF) has demonstrated its B_s physics capability!

LHC will act as a **b**-factory with large b-quark production rate including B_s , allowing to improve the CKM consistency test and to look for deviations from the SM rare processes

New Physics models introduce new particles, dynamics and/or symmetries at a higher energy scale (expected in the TeV region) with virtual particles that appear e.g. in loop processes

B Physics measurements are complementary to direct searches and will allow to understand the nature and flavour structure of possible New Physics

Completing the program on B Physics...

- ➢ Precise measurement of B⁰_s-B⁰_s mixing: Δm_s, ΔΓ_s and phase $φ_{s.}$
- Search for effects of NP appearing in suppressed and rare exclusive and inclusive B decays
- Precise γ determinations including processes only at tree-level, in order to disentangle possible NP contributions
- Other measurements of CP phases in different channels to over-constrain the Unitarity Triangles

 $\begin{array}{l} \mathsf{B}_{s} \rightarrow \mathsf{D}_{s} \pi, \ \ldots \\ \mathsf{B}_{s} \rightarrow \mathsf{J}/\psi \varphi, \ \mathsf{B}_{s} \rightarrow \mathsf{J}/\psi \eta^{(\prime)} \end{array}$

 $\begin{array}{l} \mathsf{B}_{(s)}{}^{0} {\rightarrow} \mathsf{X} \gamma, \ \mathsf{B}^{0} {\rightarrow} \mathsf{K}^{\star 0} \mathsf{I}^{+} \mathsf{I}^{-}, \\ \mathsf{b} {\rightarrow} \mathsf{s} \mathsf{I}^{+} \mathsf{I}^{-}, \ \mathsf{B}_{s} {\rightarrow} \mu^{+} \mu^{-} ... \end{array}$

```
B_{s} \rightarrow D_{s}K,

B^{0} \rightarrow D^{0}K^{*0}, B^{\pm} \rightarrow DK^{\pm},

B^{0} \rightarrow \pi\pi \& B_{s} \rightarrow KK, \dots
```

 $B^{0} \rightarrow \phi K_{s}, B_{s} \rightarrow \phi \phi, \dots$ $B^{0} \rightarrow \rho \pi, B^{0} \rightarrow \rho \rho, \dots$

B-factories vs. b-factory

	$e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\overline{B}$ PEPII, KEKB	pp \rightarrow b $\overline{b}X$ ($\sqrt{s} = 14$ TeV, $\Delta t_{bunch} = 25$ LHC (LHCb-ATLAS/CMS)	ns)
Production σ_{bb}	1 nb	~500 µb	\bigcirc
Typical bb rate	10 Hz	100–1000 kHz	
bb purity	~1/4	$\sigma_{bb}/\sigma_{inel} = 0.6\%$ Trigger is a major issue !	$(\dot{\sim})$
Pileup	0	0.5–5	
b-hadron types	$\begin{array}{c} {\rm B}^{+}{\rm B}^{-}(50\%)\\ {\rm B}^{0}{\rm B}^{0}(50\%)\end{array}$	$\begin{array}{c} B^+ (40\%), B^0 (40\%), B_s (10\%) \\ B_c (< 0.1\%), b\text{-baryons} (10\%) \end{array}$	
b-hadron boost	Small	Large (decay vertexes well separated)	
Production vertex	Not reconstructed	Reconstructed (many tracks)	
Neutral B mixing	Coherent B ⁰ B ⁰ pair mixing	Incoherent B ⁰ and B _s mixing (extra flavour-tagging dilution)	
Event structure	BB pair alone	Many particles not associated with the two b hadrons	

Experimental sensitivity

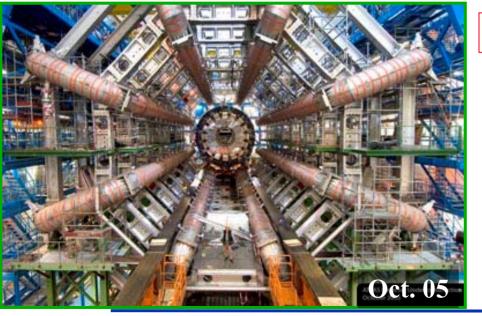
How to reach high sensitivities:

- > *B* production rate and detector acceptance
- > trigger (incl. fully hadronic decays)
- background reduction
 - ✓ Good mass resolution
 - ✓ Particle Identification
- > Good decay time resolution for B_s
- Flavour tagging

Vancouver, 9-12 April 2006

Flavor Physics and CP Violation

Andreas Schopper



Status of detectors

Expect first collisions in summer 2007!

Vancouver, 9-12 April 2006

Flavor Physics and CP Violation

Andreas Schopper

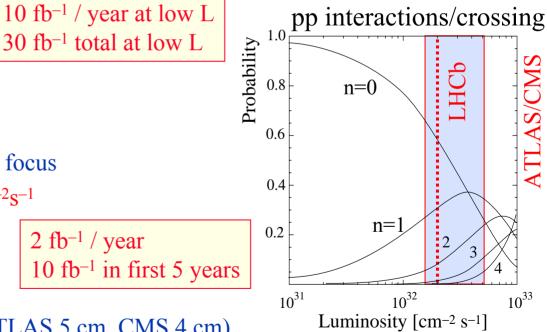
Luminosity and pileup

30 fb⁻¹ total at low L

<u>Pileup</u>

 \checkmark number of inelastic pp interactions in a bunch crossing is Poisson-distributed with mean $n = L\sigma_{inel}/f$

ATLAS/CMS (f = 32 MHz)


- ✓ want to run at highest luminosity available
- \checkmark expect L<2×10³³ cm⁻²s⁻¹ (n < 5) for first 3 years
- ✓ at L= 10^{34} cm⁻²s⁻¹ (n = 25), expect only $B \rightarrow \mu\mu$ still possible

\blacktriangleright <u>LHCb</u> (f = 30 MHz)

- \checkmark L tuneable by adjusting the beam focus
- \checkmark choose to run at $<L>\sim 2\times 10^{32}$ cm⁻²s⁻¹ $(\max. 5 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1})$ $2 \text{ fb}^{-1} / \text{year}$
 - clean environment (n = 0.5)
 - less radiation damage (LHCb 8mm from beam, ATLAS 5 cm, CMS 4 cm)
 - will be available from 1st physics run

$$\sigma_{\rm inel} = 80 \text{ mb}$$

(nominal year =
$$10^7$$
 s)

ATLAS trigger

Full ATLAS trigger:

- LVL1: hardware, coarse detector granularity,
- LVL2: full granularity, LVL1 confirmation + partial rec.,
- ► EF (event filter): full event access, "offline" algorithms

Strategy for B physics trigger:

- → High luminosity (> 2×10^{33} cm⁻²s⁻¹):
 - ✓ LVL1: dimuon, $p_T > 6$ GeV/c each
- Low luminosity (or end of) fills:
 - ✓ LVL1: add single muon, $p_T > 6-8 \text{ GeV/c}$
 - ✓ LVL2: look for objects around muon
 - 2nd muon (with lower threshold) in muon RoI
 - Single e/γ or e^+e^- pair in EM RoI
 - Hadronic b decay products in Jet RoI (e.g. $B_s \rightarrow D_s^- \pi^+$)

2 μs latency
10 ms processing
1 s processing

Trigger level	Total output rate	Output rate for B physics
LVL1	75 kHz	10–15 kHz
LVL2	2 kHz	1–1.5 kHz
EF	200 Hz	10–15 Hz

CMS trigger

Trigger to cover widest range of discovery physics (Higgs, SUSY, ...)

- ► Level 1: (nominal)
- \succ

3.2µs buffer, $\rightarrow 100 \text{ kHz}$

HLT (High-Level Trigger): 1s buffer, 40 ms processing, \rightarrow 100 Hz

Trigger on B events:

- Level 1: di- μ with $p_T > 3$ GeV/c each (or single μ with $p_T > 14$ GeV/c)
- HLT: Limited time budget
 - \rightarrow restrict B reconstruction to RoI around µ or use reduced number of hits/track ($D_s \pi$)

Trigger level	Total output rate (at start-up)	Output rate relevant for B physics
Level 1	50 kHz	14 kHz (1μ) 0.9 kHz (2μ)
HLT	100 Hz	~ 5 Hz of incl. b,c→µ+jet + O(1 Hz) for each excl. B mode

LHCb trigger

PC farm of ~2000 CPUs

10 MHz (visible bunch crossings)

Custom electronics boards

 \checkmark Fully synchronized (40 MHz), 4 μs fixed latency

✓ "High p_T " μ , $\mu\mu$, e, γ and hadron + pileup info (e.g. $p_T(\mu) > 1.3$ GeV/c)

1 MHz (full detector readout)

Software trigger

✓ Full detector info available, only limit is CPU time

✓ 1st stage: ~1 ms \rightarrow 40 kHz (could change)

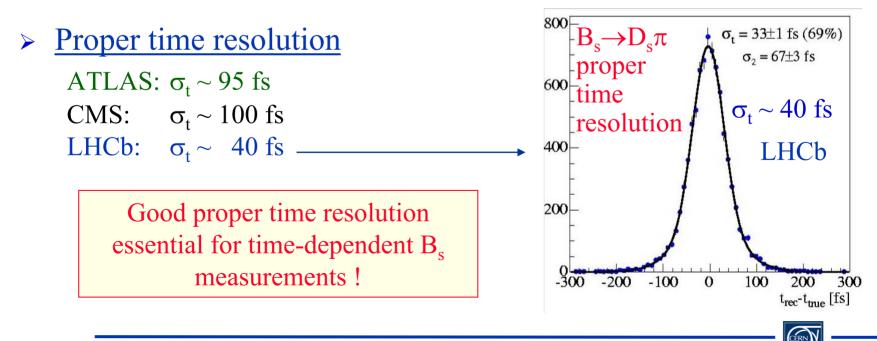
• Tracks with min. impact param. and $p_T + (di)muon$

✓ High-Level trigger: ~ 10 ms

• Full event reconstruction: excl. and incl. streams

 \leq 2 kHz (storage)

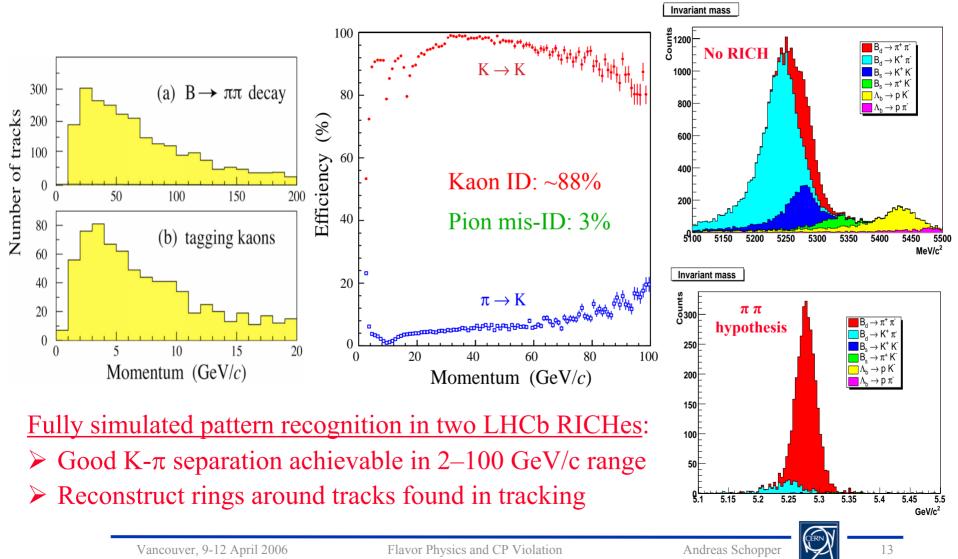
Out put rate	Event type	Physics
200 Hz	Exclusive B candidates	B (core program)
600 Hz	High mass di-muons	J/ψ, b→J/ψX (unbiased)
300 Hz	D* candidates	Charm
900 Hz	Inclusive b (e.g. b→µ)	B (data mining)


exact splitting between streams can be optimized according to physics requirements
 large inclusive streams to be used to control calibration and systematics (trigger, tracking, PID, tagging)

Tracking performance

➢ <u>Mass resolutions</u> in MeV/c²

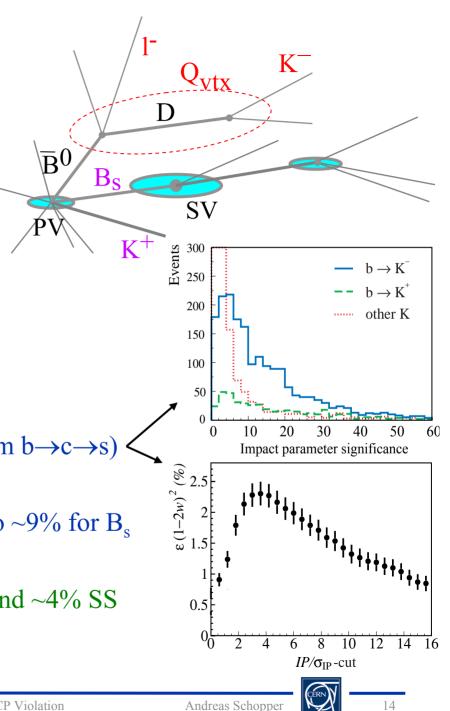
	ATLAS	CMS	LHCb	
$B_s \rightarrow \mu\mu$	80	46	18	
$B_s \rightarrow D_s \pi$	43	-	14	
$B_{_{S}}\rightarrow J/\psi \; \phi$	36	32	16	without
$B_{_{S}}\rightarrow J/\psi \; \phi$	16	13	8	with


without J/ψ mass with J/ψ mass constraint

Particle ID performance of LHCb

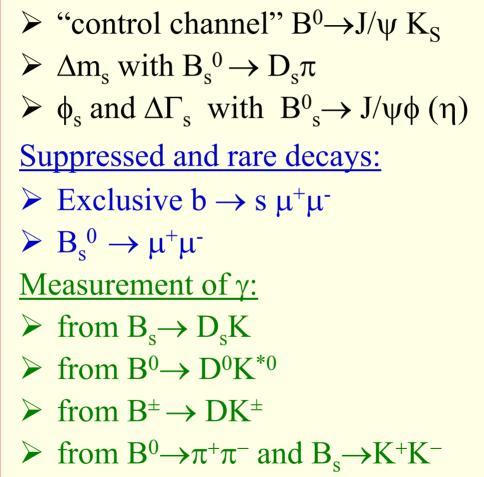
Requirements:

- ✓ Background suppression => high momentum hadrons in two-body B decays
- ✓ B flavor tagging (identify K from $b \rightarrow c \rightarrow s$) => low momentum hadrons



Flavour tagging

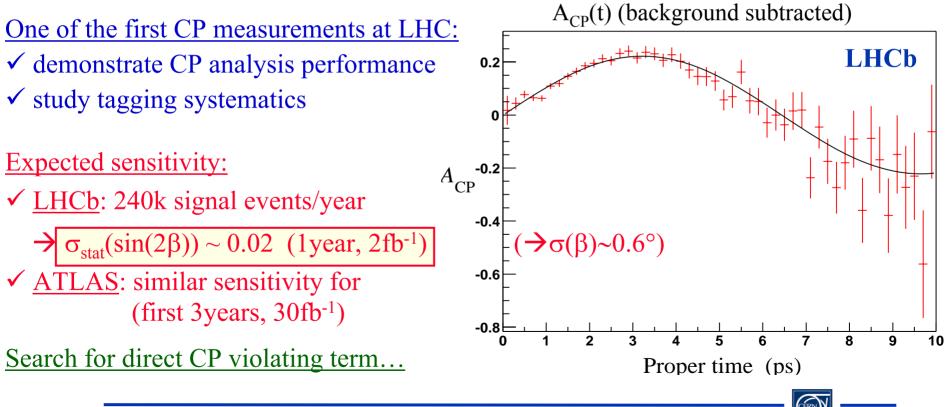
Tagging power	$\varepsilon D^2 = \varepsilon (1-2w)^2$ in %			
Tag	LHCb	ATLAS	CMS (1999)	
Muon	1.0	0.7	(0.6)	
Electron	0.4	0.4	(0.5)	
Kaon	2.4	_	-	
Jet/vertex	1.0	1.8–2.1	(2.3)	
Same side	2.1	2.1–2.4	(2.2)	


≻ <u>LHCb:</u>

- ✓ Most powerful tag is opposite kaon (from $b \rightarrow c \rightarrow s$) <
- ✓ Combined $\varepsilon D^2 \sim 6\%$ (B_s) or ~ 4% (B⁰)
- \checkmark Recent neural network approach leads to ~9% for $\rm B_{s}$
- ➤ <u>Compare with:</u>
 - \checkmark Tevatron: D0 ~2.5% , CDF ~1.5% OS and ~4% SS
 - ✓ B factories achieved ~ 30%

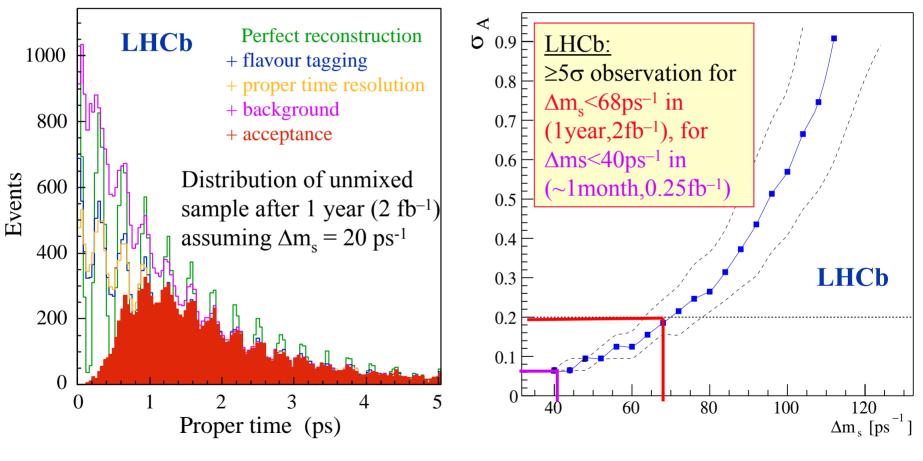
Expected Physics Performance

B-mixing:



sin(2 β) from B⁰ \rightarrow J/ ψ K_S

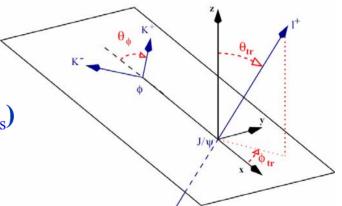
- \succ "gold-plated" decay channel at B-factories for measuring the B_d- B_d mixing phase
- > needed for extracting γ from B $\rightarrow \pi \pi$ and B_s $\rightarrow K K$, or from B $\rightarrow D^* \pi$
- ▷ in SM $A_{CP}^{dir} = 0$, non-vanishing value $\mathscr{O}(0.01)$ could be a signal of Physics Beyond SM

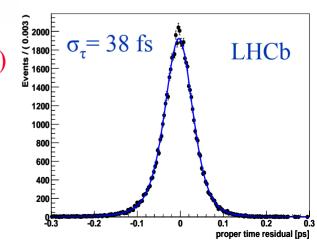

$$A_{CP}^{th}(t) = A_{CP}^{dir} \cdot \cos(\Delta m_d \cdot t) + A_{CP}^{mix} \cdot \sin(\Delta m_d \cdot t)$$

> Measurement of Δm_s is one of the first LHCb physics goals

✓ Expect 80k $B_s \rightarrow D_s^- \pi^+$ events per (1year, 2fb⁻¹), average $\sigma_t \sim 40$ fs

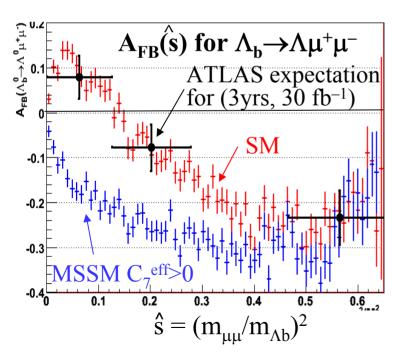
✓ S/B ~ 3 (derived from 10⁷ fully simulated inclusive bb ev.)

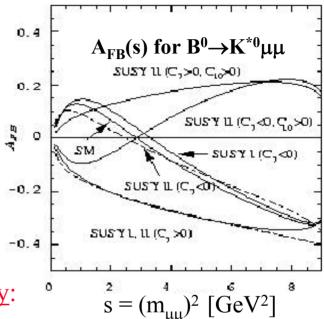

\succ <u>ATLAS/CMS</u>: 5σ observation for Δm_s < 22 ps⁻¹ in (3years, 30fb⁻¹)


ϕ_s and $\Delta \Gamma_s$ from $B_s \rightarrow J/\psi \phi$ (η,η'...)

- > SU(3) analogue of B \rightarrow J/ ψ K_s, measuring the B_s- \overline{B}_s mixing phase
- ⇒ in SM $\phi_s = -\arg(V_{ts}^2) = -2\lambda\eta^2 \sim -0.04$ → increased sensitivity to New Physics
- Iarge CP asymmetry would signal Physics Beyond SM
- ⇒ also needed for extracting γ from $B_s \rightarrow D_s K$ or from $B \rightarrow \pi \pi$ and $B_s \rightarrow K K$
- $J/\psi\phi$ is not a pure CP eigenstate:
- ✓ 2 CP even, 1 CP odd amplitudes contributing
- ✓ need to fit angular distributions of decay final states as function of proper time (needs external Δm_s)
- \checkmark requires very good proper time resolution

Expected sensitivity: (at $\Delta m_s = 20 \text{ ps}^{-1}$)


- ✓ <u>LHCb</u>: 125k Bs→J/ $\psi\phi$ signal events/year
 - → $\sigma_{\text{stat}}(\sin \phi_{\text{s}}) \sim 0.031$, $\sigma_{\text{stat}}(\Delta \Gamma_{\text{s}}/\Gamma_{\text{s}}) \sim 0.011$ /(1year, 2fb⁻¹) → $\sigma_{\text{stat}}(\sin \phi_{\text{s}}) \sim 0.013$ after first 5 years, adding pure CP modes like J/ψη, J/ψη' (small improvement)
- ✓ <u>ATLAS</u>: similar event rate as LHCb but less sensitive → $\sigma_{stat}(\sin \phi_s) \sim 0.08$ (1year, 10fb⁻¹)
- ✓ <u>CMS</u>: > 50k events/year, sensitivity study ongoing



Exclusive b \rightarrow s $\mu^+\mu^-$

- Suppressed decays ($\Delta B=1$ FCNC), SM BR ~ 10⁻⁶
- Forward-backward asymmetry A_{FB}(s) in the μμ restframe is a sensitive probe of New Physics [A.Ali et al., Phys. Lett. B273,505 (1991)]
- Zero point can be predicted at LO with no hadronic uncertainties, known at 5% level in SM, sensitive to NP via non-standard values of Wilson coefficients

<u>Expected sensitivity</u>: ✓<u>LHCb</u>:

4400 B⁰→K^{*0} $\mu^+\mu^-$ events/(yr,2fb⁻¹), S/B>0.4 → determine C₇^{eff}/C₉^{eff} with 13% error (SM) ✓ATLAS:

1000 B⁰ \rightarrow K^{*0} $\mu^+\mu^-$ events/(yr,10fb⁻¹), S/B>1 \checkmark Other exclusive b \rightarrow sµµ feasible (B_s, $\Lambda_{\rm b}$)

- > Very rare decay, sensitive to new physics
- → BR ~ 3.5×10^{-9} in SM, can be strongly enhanced in SUSY
- Current limit from Tevatron:
 - ✓ D0: 2.3×10⁻⁷ at 95% CL
 - ✓ CDF: 1.0×10⁻⁷ at 95% CL

LHC has prospect for significant measurement

but difficult to get reliable estimate of expected background:

- ✓ LHCb: Full simulation: 10M incl. bb events + 10M b→ μ , b→ μ events (all rejected)
- ✓ ATLAS: 80k bb→ $\mu\mu$ events with generator cuts, efficiency assuming cut factorization
- ✓ CMS: 10k b→ μ , b→ μ events with generator cuts, trigger simulated at generator level, efficiency assuming cut factorization

	1 year	$B_s \rightarrow \mu^+ \mu^-$ signal (SM)		Inclusive bb background	Other backgrounds
LHCb	2 fb ⁻¹	30	< 100	< 7500	
ATLAS	10 fb ⁻¹	7	< 20		
CMS (1999)	10 fb⁻¹	7	< 1		

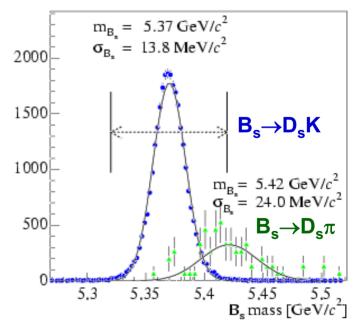
➤ New assessment of ATLAS/CMS reach at 10³⁴ cm⁻²s⁻¹ in progress

 γ from B_c \rightarrow D_cK

 $B_{s}^{0}\left\{\overline{b}_{s} \underbrace{\overline{b}_{s}}{} \underbrace{\overline{b}_{$

- > 2 tree decays (b \rightarrow c and b \rightarrow u) of same magnitude ($\sim\lambda^3$) interfere via B_s mixing
 - \rightarrow insensitive to new physics
 - \rightarrow large interference effects expected

> CP asymmetry measures ($\gamma + \phi_s$), with ϕ_s being determined using $B_s \rightarrow J/\psi \phi$

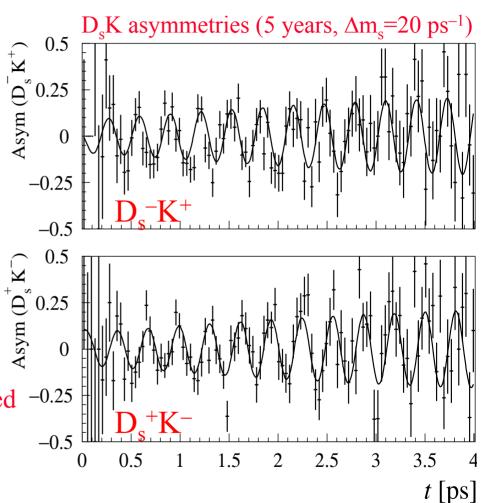

 \succ needs suppression of B_s→ D_sπ background (BR~12 higher)

Important for selection:

- ✓ hadron trigger
- \checkmark mass resolution
- \checkmark proper-time resolution
- K/ π separation

Expected LHCb signal rates and background:

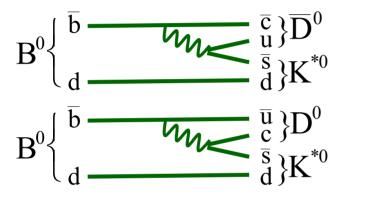
- ✓ 5400 signal events in (1year, 2fb⁻¹)
- \checkmark residual contamination from $\rm B_s{\rightarrow}\,D_s\pi~{\sim}\,10\%$
- ✓ $S/B_{bb} > 1$ at 90% CL (from one MC bb event)

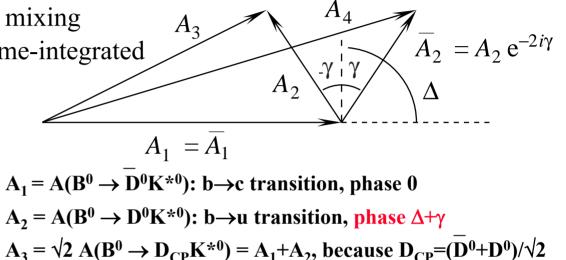

M

 γ from $B_s \rightarrow D_s K$

Fit the 4 tagged, time-dependent rates: ✓ phase of $D_{s}^{-}K^{+} = \Delta + (\gamma + \phi_{s})$ ✓ phase of $D^+_{s} K^- = \Delta - (\gamma + \phi_s)$ \rightarrow extract both Δ and $(\gamma + \phi_s)$ Expected LHCb sensitivity: $(at \Delta m_s = 20 ps^{-1}, -20^{\circ} < \Delta < 20^{\circ})$ Asym (D_s $\sigma(\gamma) \sim 14^{\circ}$ in (1year, 2fb⁻¹) (expected to be statistically limited) \checkmark Discrete ambiguities in γ can be resolved • if $\Delta \Gamma_s$ large enough, or

• using $B^0 \rightarrow D\pi$ and U-spin symmetry





γ from B⁰ \rightarrow D⁰K^{*0}

- Dunietz variant of Gronau-Wyler method [Phys. Lett. B270, 75 (1991)]
- Two colour-suppressed diagrams with $|A_2|/|A_1| \sim 0.4$ interfering via D⁰ mixing
- ➢ 6 decay rates, self-tagged and time-integrated

Expected signal rates and background: (1year, 2fb⁻¹), γ =65°, Δ =0

Mode (+ CP conjugates)	Yield	S/B _{bb} (90%CL)
$B^0 \rightarrow \overline{D}{}^0 (K^+\pi^-) K^{*0} (K^+\pi^-)$	3.4 k	> 2
$B^0 \rightarrow D^0 (K^- \pi^+) K^{*0} (K^+ \pi^-)$	0.5 k	> 0.3
$B^0 \rightarrow D^0_{CP} (K^+K^-) K^{*0} (K^+\pi^-)$	0.6 k	> 0.3

Expected LHCb sensitivity: $\sqrt{\sigma(\gamma) \sim 8^{\circ} \text{ in (1year, 2fb}^{-1)}}$ for 55°< γ <105°, -20°< Δ <20°

$\gamma \text{ from } B^{\pm} \rightarrow DK^{\pm}$

- based on Atwood-Dunietz-Soni method [Phys. Rev. Lett. 78, 3257 (1997)]
- → measure relative rates of $B^- \rightarrow D(K\pi) K^-$ and $B^+ \rightarrow D(K\pi) K^+$
 - ✓ Two interfering tree B-diagrams, one colour-suppressed ($r_B \sim 0.15$)
 - ✓ Two interfering tree D-diagrams, one Double Cabibbo-suppressed ($r_D^{K\pi} \sim 0.06$)

$$B^{-}\left\{\begin{matrix} b\\ \overline{u} \\ \hline colour-allowed \end{matrix} \right. \stackrel{S}{u} \\ B^{-}\left\{\begin{matrix} b\\ \overline{u} \\ \overline{c} \\ colour-suppressed \end{matrix} \right\} \stackrel{W}{K^{-}} \\ B^{-}\left\{\begin{matrix} b\\ \overline{u} \\ \overline{c} \\ colour-suppressed \end{matrix} \right\} \stackrel{W}{K^{-}} \\ \hline colour-suppressed \end{matrix} \right\} \stackrel{Weak phase diff.: \gamma}{Magnitude ratio: r_{B}} \\ Strong phase diff.: \delta_{B} \\ Strong phase diff.: \delta_{B} \\ Magnitude ratio: r_{D}^{K\pi} \\ Strong phase diff.: \delta_{D}^{K\pi} \\ Strong phase diff. \\ Strong phase$$

Measure relative B-decay rates:

- $\Gamma(B^{-} \to (K^{-}\pi^{+})_{D} K^{-}) \propto 1 + (r_{B} r_{D}^{K\pi})^{2} + 2 r_{B} r_{D}^{K\pi} \cos\left(\delta_{B} \delta_{D}^{K\pi} \gamma\right),$ (1) $\Gamma(B^{-} \to (K^{+}\pi^{-})_{D} K^{-}) \propto r_{B}^{2} + (r_{D}^{K\pi})^{2} + 2 r_{B} r_{D}^{K\pi} \cos\left(\delta_{B} + \delta_{D}^{K\pi} - \gamma\right),$ (2) $\Gamma(B^{+} \to (K^{+}\pi^{-})_{D} K^{+}) \propto 1 + (r_{B} r_{D}^{K\pi})^{2} + 2 r_{B} r_{D}^{K\pi} \cos\left(\delta_{B} - \delta_{D}^{K\pi} + \gamma\right),$ (3) $\Gamma(B^{+} \to (K^{-}\pi^{+})_{D} K^{+}) \propto r_{B}^{2} + (r_{D}^{K\pi})^{2} + 2 r_{B} r_{D}^{K\pi} \cos\left(\delta_{B} + \delta_{D}^{K\pi} + \gamma\right),$ (4)
- > 3 observables, 5 parameters $(\gamma, \delta_B, \delta_D^{K\pi}, r_B, r_D^{K\pi})$, but $r_D^{K\pi} \sim 0.06$ known > add more D-decays to constrain further...

γ from B[±] \rightarrow DK[±]

Add further D-decays:

 $> D \rightarrow K\pi\pi\pi$ (Cabibbo favoured + DCS decay)

✓ 4 new rates with 2 new parameters, one known: $\delta_D^{K3\pi}$; $r_D^{K3\pi} \sim 0.06$

 \blacktriangleright D \rightarrow KK (CP eigenstate)

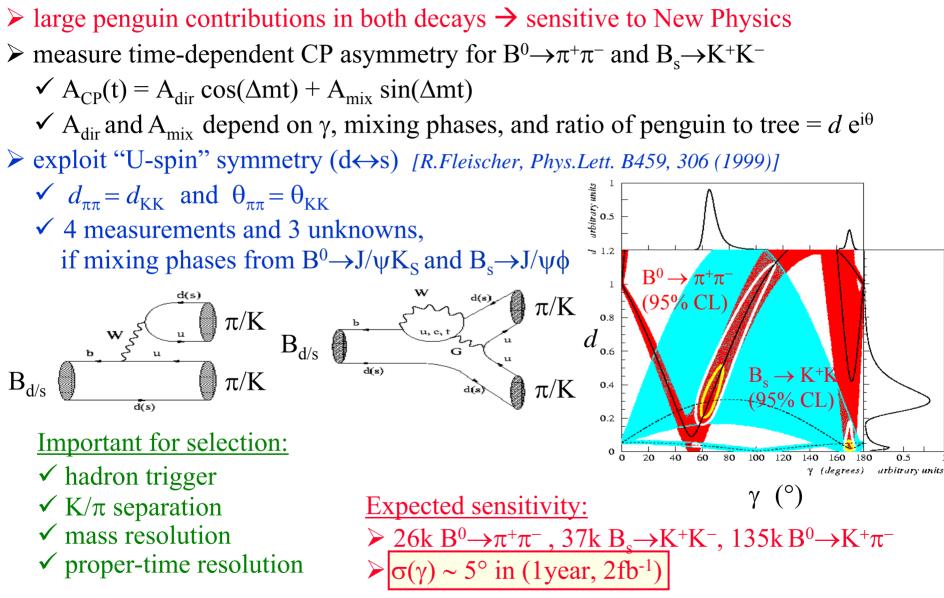
✓ 2 new rates, no new unknown: $r_D^{KK} = 1$; $\delta_D^{KK} = 0$

→ 7 relative rates and 5 unknowns: γ , r_B , δ_B , $\delta_D^{K\pi}$, $\delta_D^{K3\pi}$

 \checkmark Candidate for LHCb's statistically most precise determination of γ

✓ Estimated sensitivity: $\sigma(\gamma) \sim 5^{\circ}$ in (1year, 2fb⁻¹) → Studies ongoing...

Further B-channel considered...


 $> B^{\pm} \rightarrow D^{*}K^{\pm}$ with

- $D^* \rightarrow D^0 \pi^0 \rightarrow D^*$ and D^0 have same CP
- $D^* \rightarrow D^0 \gamma \rightarrow D^*$ and D^0 have opposite CP

γ from B⁰ $\rightarrow \pi^+\pi^-$ and B_s $\rightarrow K^+K^-$

Conclusion

- Experiments at *LHC* will pursue an extensive program on B-physics
 with high statistics
 - \checkmark access to B_s decays

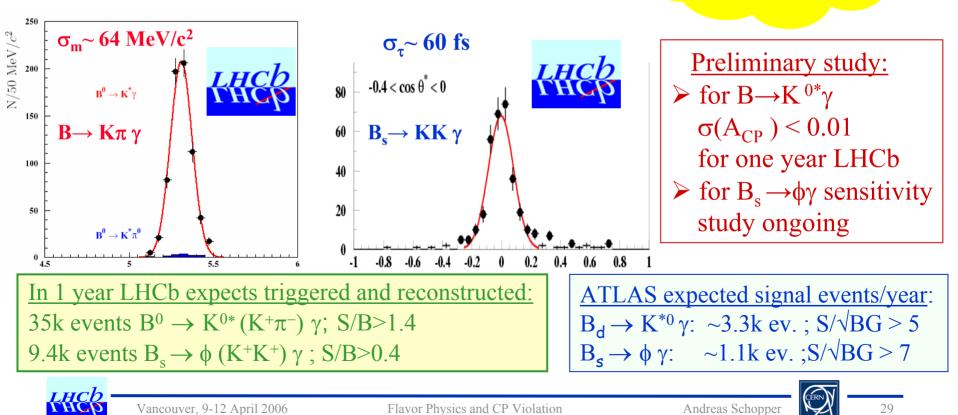
> LHCb can fully exploit the large B-meson yields at LHC from the start-up

- ✓ with excellent mass and decay-time resolution, and particle ID
- \checkmark with a flexible and robust trigger dedicated to B-physics
- ✓ measure e.g. Δm_s with 5 σ in ~1month (for Δm_s <40 ps⁻¹)
- > ATLAS and CMS will also contribute significantly

 \checkmark competitive for modes with muons and small BR

➢ <u>After 5 years</u> :	σ	SM expectation
$\phi_{s}(B_{s} \rightarrow \bar{c}c\bar{s}s)$	~0.013	~0.035
$Br(B_s \rightarrow \mu^+\mu^-)$	$\sim 0.7 \times 10^{-9}$	~3.5×10 ⁻⁹
γ (D _s K, DK)	~1°	$\sim 60^{\circ}$ (tree only)
γ (KK+ $\pi\pi$)	$\sim 2^{\circ}$	$\sim 60^{\circ}$ (tree + penguin)

Flavor Physics at LHC will contribute significantly to the search for NP via precise and complementary measurements of CKM angles and the study of loop decays



28

$B^0 \rightarrow K^{0*} \gamma$ and $B_s \rightarrow \phi \gamma$

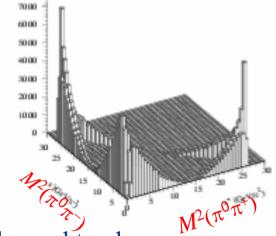
In SM:

- \geq loop-suppressed b \rightarrow s γ transitions
- ightarrow BR(B⁰→ K^{*0}γ) = (4.3±0.4) 10⁻⁵
- \succ expected direct CP violation <1% for B⁰→ K^{*0}γ
- \succ expected CP violation in mixing ~0 for B_s→ φ γ
 - \rightarrow sensitive to New Physics

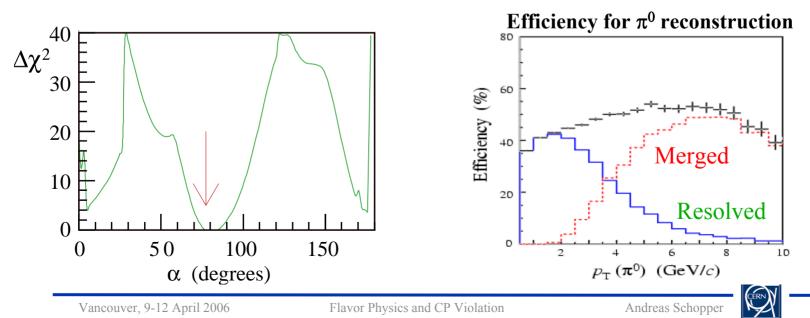
K*0

B⁰

b


u,c,t

S



$$\alpha$$
 from $B^0 \rightarrow \pi^+\pi^-\pi^0$

➤ Time-dependent Dalitz plot analysis of B⁰ → ρπ → π⁺π⁻π⁰ permits extraction of α along with amplitudes + strong phases [Snyder & Quinn]

- > Neutral π^0 reconstruction with clusters unassociated to charged tracks
- ➤ Annual yield ~ 14k events, S/B ~ 1.3 (LHCb) Complicated 11-parameter fit, studied with toy MC Statistical precision of $\sigma(\alpha) \sim 10^\circ$ achievable in one year Study of B⁰ → ρρ has started, few ×10² ρ⁰ρ⁰/year (for BR = 10⁻⁶)

LHC underground

LHC status (March 2006)

- All key objectives have been reached for the end of 2005.
 - End of repair of QRL, reinstallation of sector 7-8 and cold test of sub-sectors A and B.
 - Cool-down of full sector 8-1.
 - Pressure test of sector 4-5.
 - Endurance test of two full octants of power converters.
- Magnet installation rate is now at 20 per week with more than 450 installed (25%). In the next month, we will ramp up to 25/week. Installation will finish end February 2007.