

Heavy Flavour Physics, an introduction and review

Robert W. Lambert, NIKHEF, FOM, VU

Amsterdam, NL

Rob Lambert, NIKHEF

Lake Louise, 21st February 2012

Question 1: Where to start?

What is Recent?

EXPERIMENT

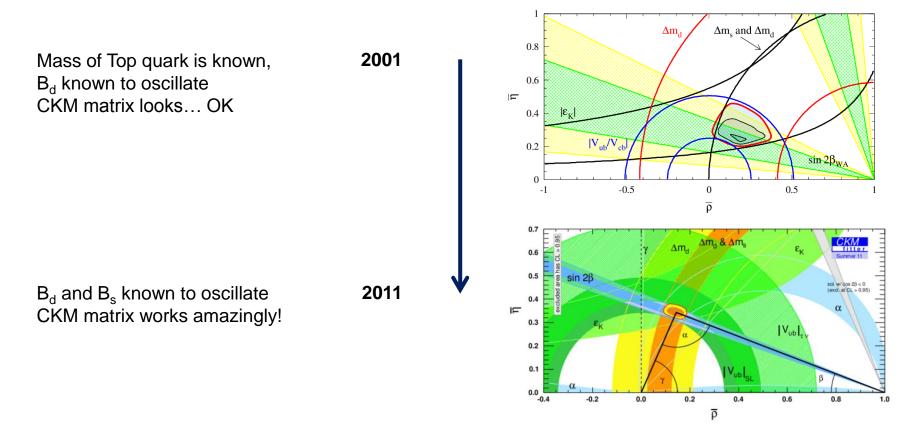
1815 1919 1920 1932 1953 1963 1964 1968 1970 1973 1974 1977 1987 1995

1815-1990

Last 20 years dominated by the B-factories and TeVatron

Many experiments, hundreds of amazing papers...

1990-2010


Rob Lambert, NIKHEF

Lake Louise, 21st February 2012

A pretty picture?

The new millennium perfected our picture of flavour in the SM

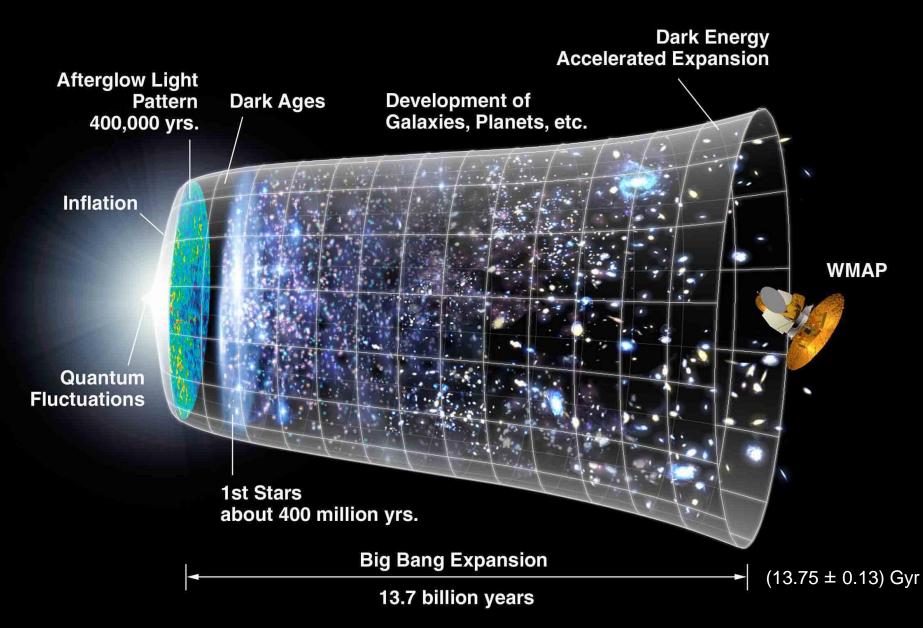
> To understand why that is important we must go back further..

…… muuuuch further ….

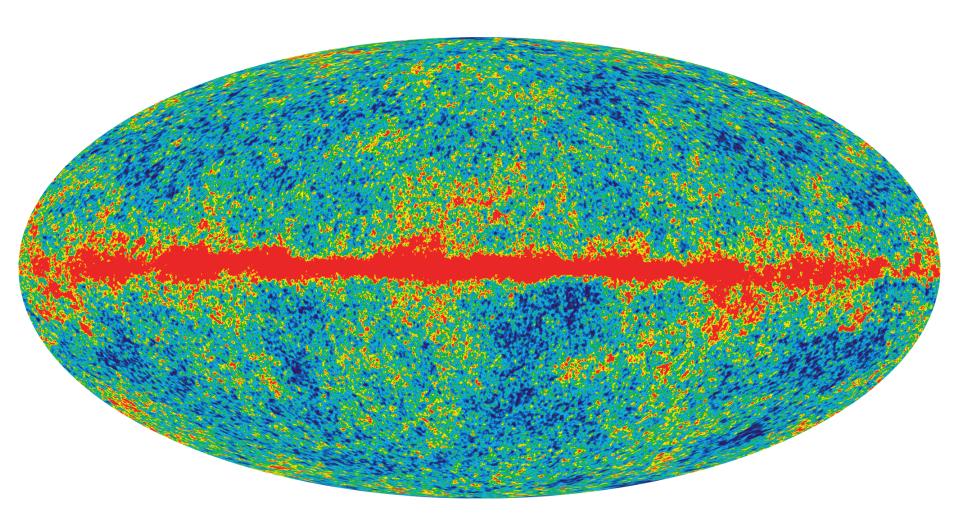
1990-2010

VU 🖌

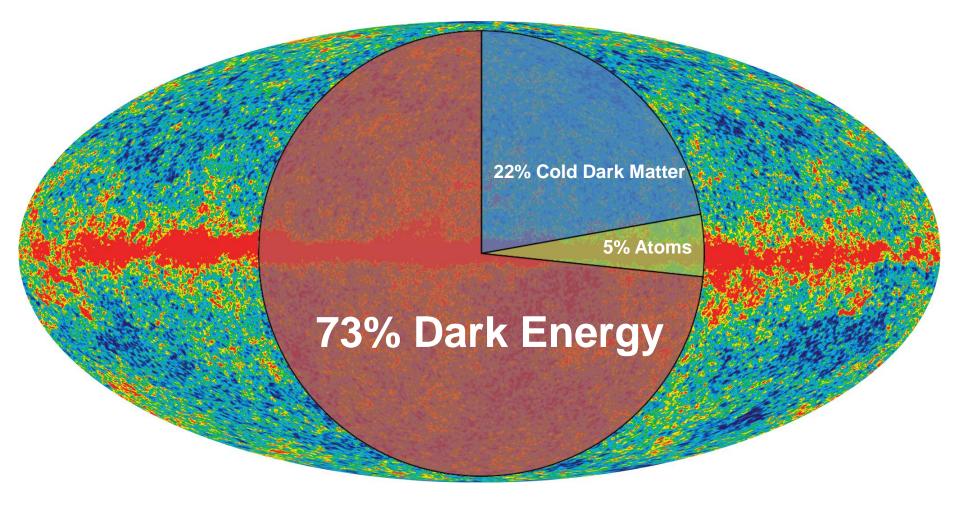
Outline



- 1. Welcome to our universe
 - Did you forget how awesome it was?
- 2. Introduction to flavour physics
 - What has that got to do with flavour physics?
 - Where can we look for new physics?
 - What are the observables?
 - What is Mixing?
- 3. 2011 results, the hottest new physics searches
- 4. Summary and Outlook

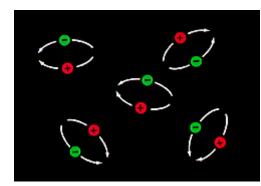


Rob Lambert, NIKHEF

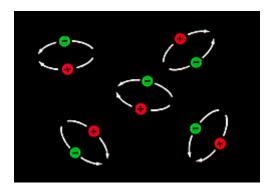

Lake Louise, 21st February 2012

(13.75 ± 0.13) Gyr

Matter and ...?

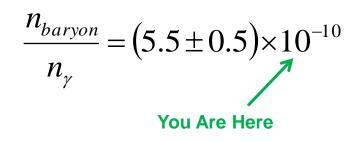


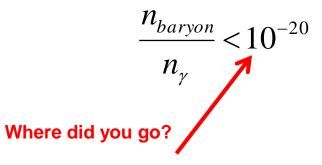
Matter + Antimatter = photons



Matter + Antimatter = photons ± CP-violation, CPV

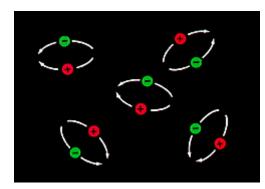
observable difference between matter and antimatter




Matter + Antimatter = photons ± CP-violation, CPV

observable difference between matter and antimatter

REALITY


SM (maximal CPV)

Guys...? Guys...??

Matter + Antimatter = photons ± CP-violation, CPV

observable difference between matter and antimatter

REALITY

$$\frac{n_{baryon}}{n_{\gamma}} = (5.5 \pm 0.5) \times 10^{-10}$$

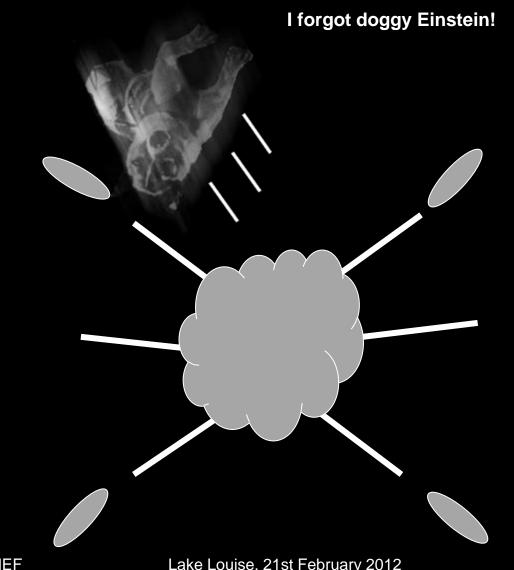
SM (maximal CPV)

$$\frac{n_{baryon}}{n_{\gamma}} < 10^{-20}$$

Mass of entire solar system: 2x10³⁰ kg

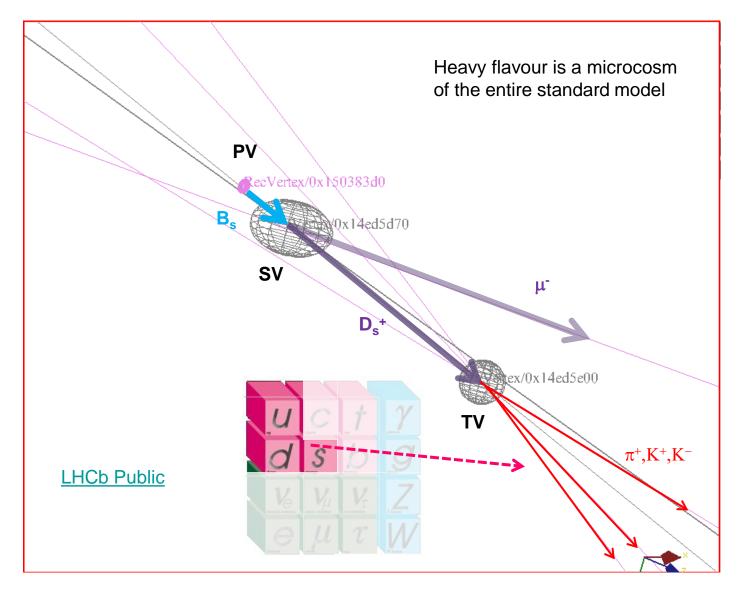
Mass of largest asteroid, Ceres: 10²¹ kg

Area ~ (Northwest+Nunavut): Population ~ one small dog

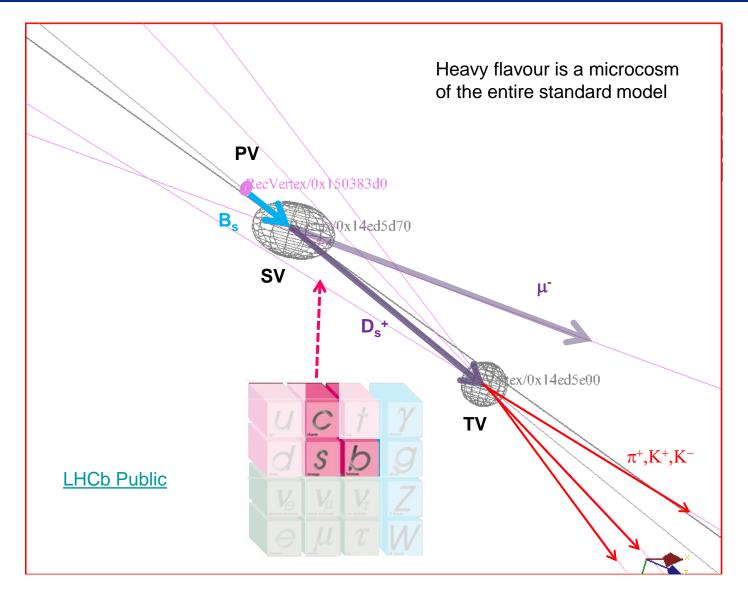

Yaay, the SM works perfectly!!! Arf! Arf!

Gravity fail.

Bad news for the SM

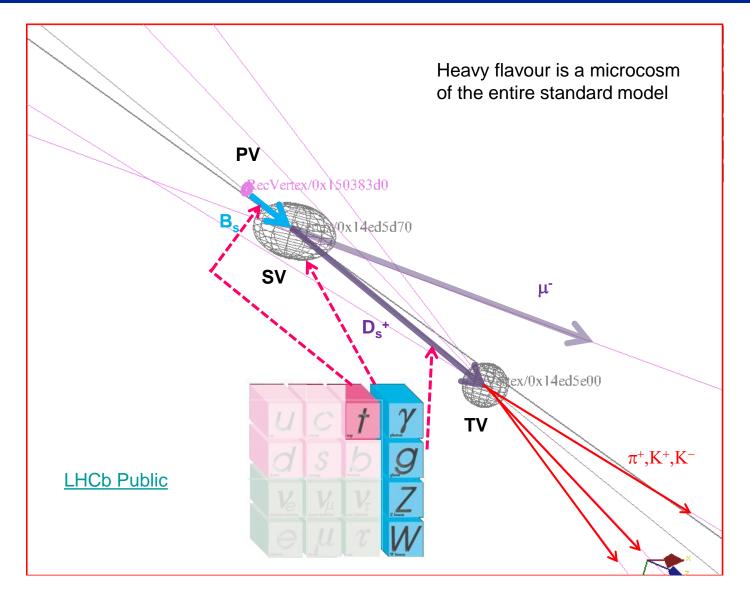

- The SM is awesome, but it fails to cover the most obvious features of our universe!!
- 1. Gravity
- 2. Inflation (Anisotropy)
- 3. 95% of stuff in the universe (dark energy and dark matter)
- 4. Why the 5% of baryonic matter even exists (CPV)
- 5. Why three generations?
- 6. Why is only one of them light?
- > Apologies to the SM, but it is a poor approximation of reality!

Question 2: What does that have to do with heavy flavour physics?



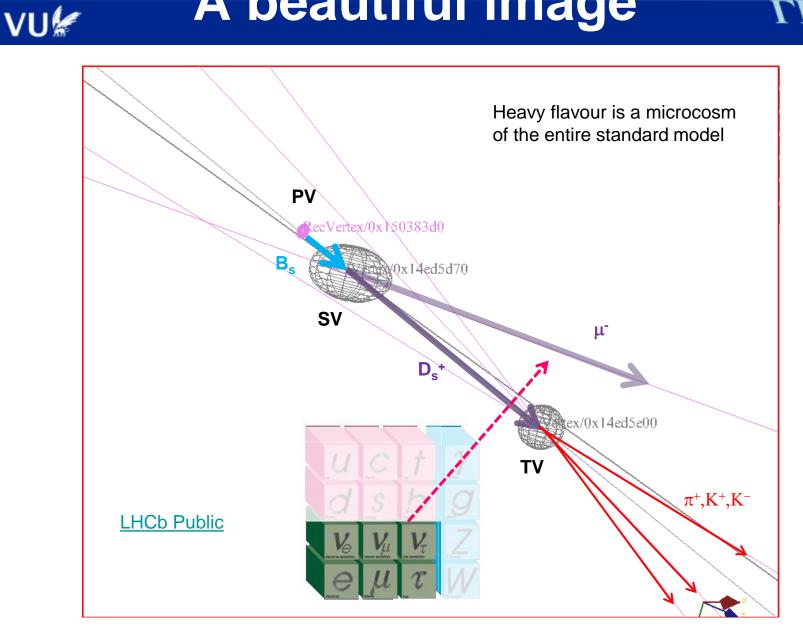
EF

VU 🖌



EF

VU 🖌



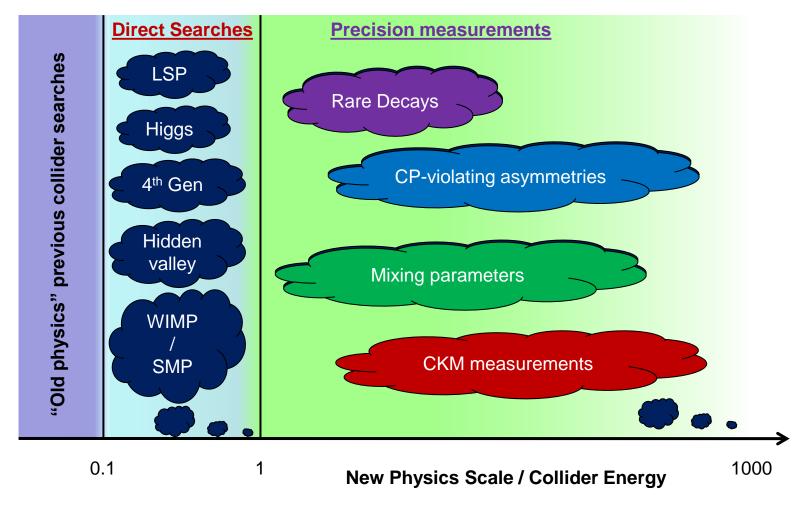
EF

VU 🖌

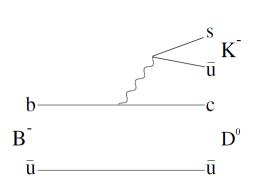
EF

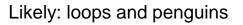
Question 3: Where can we look for new physics?

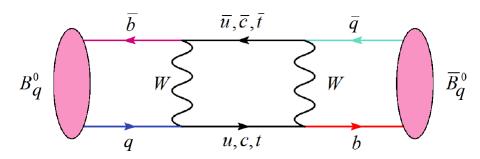
Rob Lambert, NIKHEF


Lake Louise, 21st February 2012

NP Searches

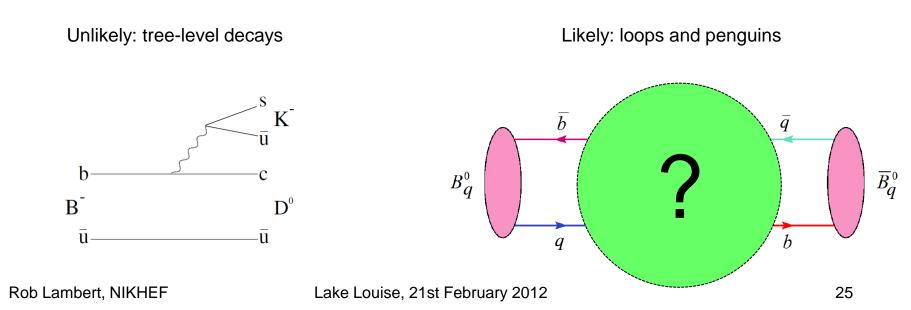

There are in general two types of new physics searches





- 1. Find a place where new physics is unlikely
- 2. Precisely measure well-predicted observables
- 3. Find a place where new physics could enter
- 4. Precisely measure related observables

Unlikely: tree-level decays



NP in loops

- 1. Find a place where new physics is unlikely
- 2. Precisely measure well-predicted observables
- 3. Find a place where new physics could enter
- 4. Precisely measure related observables

Question 4: What Are "The Observables"?

CPV observables

> SM has only one source of CPV, from the CKM, a phase

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

 $\overline{\rho} + i\overline{\eta}$

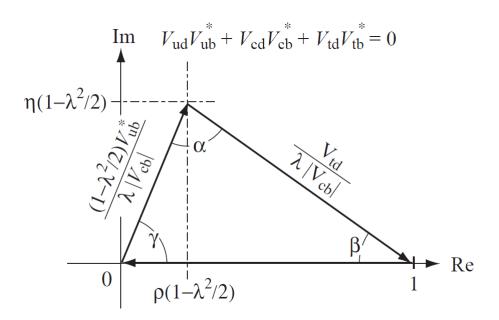
> Observe this and any NP phase with interference:

Need observables with two competing amplitudes

> SM phase manifests most obviously in the *b*-quark system

Rob Lambert, NIKHEF

VU 🕊


Lake Louise, 21st February 2012

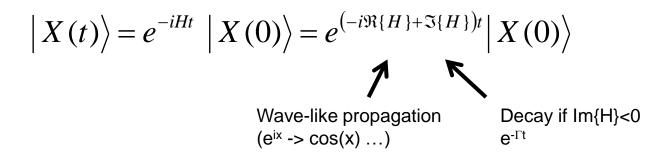
Unitarity Triangles

- Product of rows and columns are constrained by unitarity
- > Of the nine relationships, six form a unitarity triangle
- The most well-known triangle is:


A lot of phases are neatly accessible through Mixing

Question 5: What Is Mixing?

NINGER Neutral mesons are Weird Luch



"mass eigenstates are not the flavour eigenstates"

- Probably the weirdest phenomenon in physics!
- "neither of those are the CP-eigenstates"
 - CP-violation is very weird in itself
 - Observation of CPV in Kaons in 1964, before any predictions!

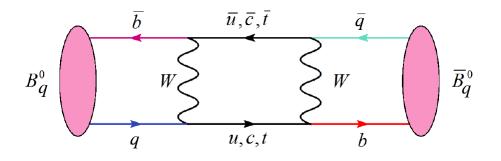
Evolution of a state is governed by the Hamiltonian:

Leads to the most basic Hamiltonian of anything

$$H|X\rangle = i\frac{d}{dt}|X\rangle = \left(M_X - \frac{i}{2}\Gamma_X\right)|X\rangle$$

> X is an eigenstate, with a mass and a lifetime

Rob Lambert, NIKHEF


Lake Louise, 21st February 2012

➢ In the *b*-system we have two coupled states

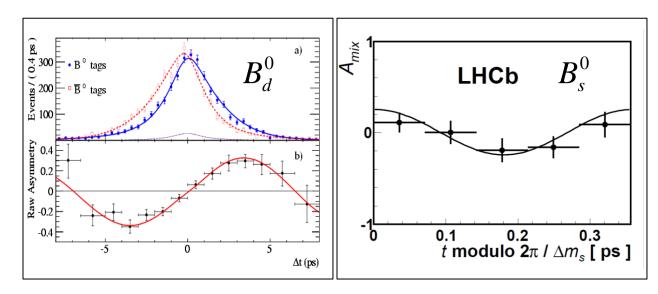
Simplest one-line Hamiltonian is now a matrix

$$i\frac{d}{dt}\left(\begin{vmatrix} B_q^0(t) \\ B_q^0(t) \end{vmatrix}\right) = \left(\underbrace{M_q}_{q} - \frac{i}{2} \prod_{q} \int \left(\begin{vmatrix} B_q^0(t) \\ B_q^0(t) \end{vmatrix}\right)$$

Off-diagonal elements encode mixing and interference (!=0)

Rob Lambert, NIKHEF

Lake Louise, 21st February 2012



 \succ Diagonalize to find the "propagating" states, with a "simple" H

$$H |B_{L/H}\rangle = i \frac{d}{dt} |B_{L/H}\rangle = \left(M_{L/H} - \frac{i}{2} \Gamma_{L/H} \right) |B_{L/H}\rangle$$

Not flavour states - time-dependent mixtures of probabilities

UK

Observables

- Four simple observables:
 - 1. Average width $\overline{\Gamma}, \Gamma_{11} + \Gamma_{22}$
 - 2. Average mass \bar{M}
 - 3. Width Difference
 - 4. Mass Difference

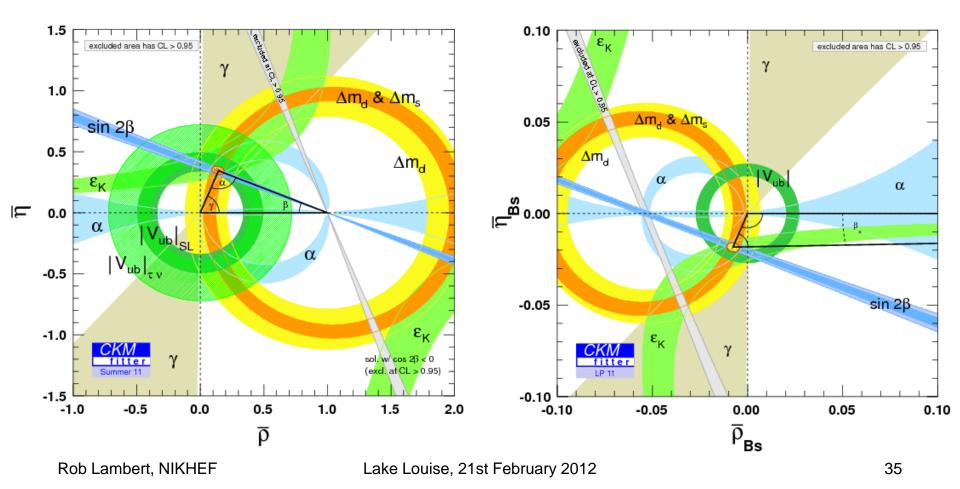
$$M, M_{11} + M_{22}$$

$$\Delta \Gamma_q = \left(\Gamma_H^q - \Gamma_L^q\right) = 2\left|\Gamma_{12}^q\right| \arg\left\{\frac{\Gamma_{12}^q}{M_{12}^q}\right\}$$

$$\Delta m_q = \left(M_H^q - M_L^q\right) = 2\left|M_{12}^q\right|$$

> And we also have **a phase**, which violates CP:

$$\phi_q = \arg\left\{-\frac{M_{12}^q}{\Gamma_{12}^q}\right\} \qquad \text{and/or} \qquad a_{fs}^q = \operatorname{Im}\left\{\frac{\Gamma_{12}^q}{M_{12}^q}\right\}$$


> All very predictable observables in the SM, related to the CKM

CKM - status

- Plot everything together on a single graph
- Everything is consistent ... so far ...

A01 A11 A11 A11 A11	work work work work	and and and and	no no no no	play play play play play	makes makes makes makes	Jack Jack Jack Jack	88888	dull boy. dull boy. dull boy. dull boy. dull boy. dull boy. dullboy.	
								dullboy. dull boy.	

All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. no play makes Jack a dull boy. 10 play makes Jack a dull boy. 11 work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy.

All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy. All work and no play makes Jack a dull boy.

Pit Stop

Intermission, intermezzo, break, pause, rest, deep breath

A. What to take away so far?

- 1815 -> 1990: ⁽¹⁾ Electro-weak, quarks, CKM ⁽²⁾
- 1990 -> 2010: ② QCD, CPV, Mixing ③

B. Theory?

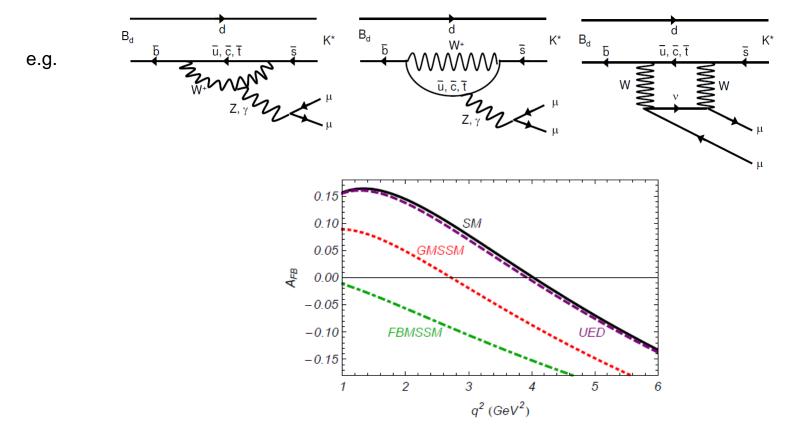
- Mixing is a simple QM process, you can understand it!
- Mixing and other variables can accurately measure CPV
- The only source of CPV in the SM is a single phase in the CKM

C. So: What's left? What's interesting? What's new?

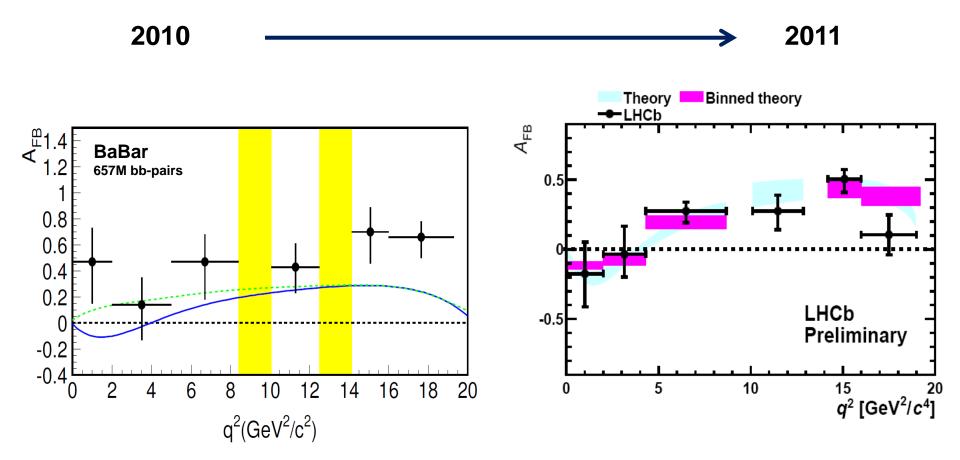
Status of example searches (as of the end of 2011)

So many results ...

- LHCb 31 papers, most are on heavy flavour
 - See here
 - Four great examples:
 - Differential branching fraction and angular analysis of the decay $B^0 \rightarrow K^{*0} \mu + \mu^-$
 - Measurement of the CP violating phase ϕ_s in <u>B_s->J/ ψ f⁰(980)</u>
 - Search for the rare decays $\underline{B}_{s} \rightarrow \mu + \mu$ and $\underline{B}^{0} \rightarrow \mu + \mu$
 - Measurement of the effective <u>B⁰</u> -> K+ K- lifetime
- CMS, 9 papers on heavy flavour
 - See here
 - e.g. Search for <u>B(s) and B to dimuon</u> decays in pp collisions at 7 TeV
- > ATLAS, 3 papers on heavy flavour
 - See here
 - e.g.: Observation of a <u>new χ_{b} state</u> in radiative transitions to $\Upsilon(1S)$ and $\Upsilon(2S)$


- Three key results with major updates in 2011
- 1. B⁰ -> K^{*0} μ+ μ-
 - Model-independent test of classes of NP
- 2. $B_s \rightarrow \mu + \mu and B^0 \rightarrow \mu + \mu -$
 - Direct constraints on SUSY models and mass scales
- 3. Phase ϕ_s in $B_s \rightarrow J/\psi f^0(980)$ and $B_s \rightarrow J/\psi \Phi$
 - Determine CPV in the B_s system

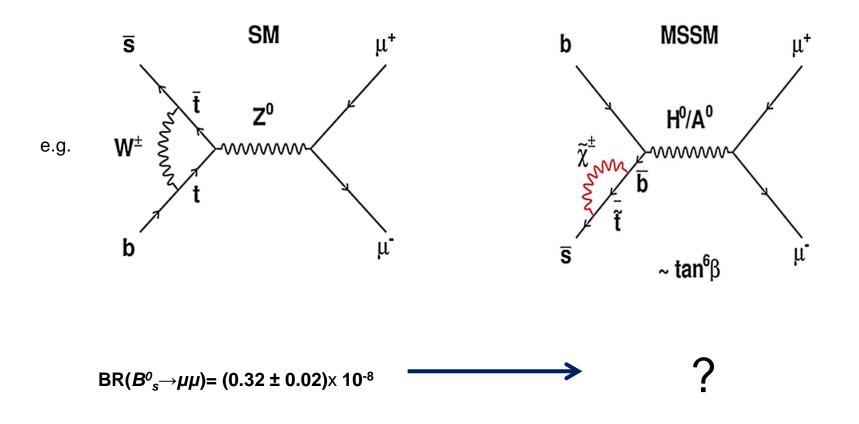
- ... more updates coming soon (Moriond ... next few weeks)!
- ... even more where the LHC hasn't yet made a statement!


- > $B_d \rightarrow K^* \mu \mu$ has both loops and penguins!
- Amongst many observables A_{fb} is sensitive to SUSY

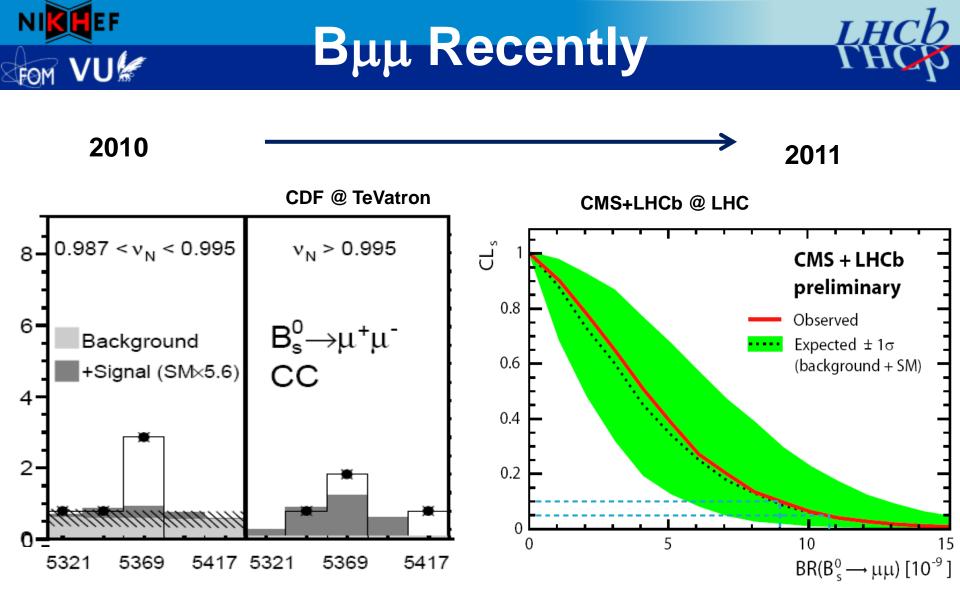
Lake Louise, 21st February 2012

K*µµ Recently

EF


VU 🖌

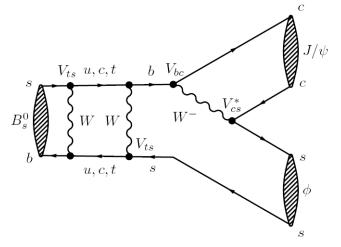
FOM


Βμμ Motivation

- Very rare decays, where SM BR predictions are very good
- > In the case of $B_{s/d} \rightarrow \mu\mu$, the rate is very sensitive to SUSY

VU🕊

BR(*B*⁰_s→µµ)<4.3 × 10⁻⁸ @95%CL


BR(*B*⁰_s→µµ)<1.08 × 10⁻⁸ @95%CL

ϕ_s Motivation

- > $B_s \rightarrow J/\psi \Phi$ and $B_s \rightarrow J/\psi f^0(980)$
 - Flavour-symmetric, charge-symmetric, final states
 - e.g. (K+K-μ+μ-), through resonances
- ✓ Can be reached by B_s and B_s
 ✓ Mixing, decay, interference
 ✓ Maximum chance for CPV

> $B_s \rightarrow J/\psi \Phi$ requires separating out CP-odd and CP-even

Tagged, time-dependent angular analysis

> $B_s \rightarrow J/\psi f^0(980)$ has a lower BR, but is essentially CP-odd

No angular component required

Rob Lambert, NIKHEF

Complex analysis!

 $\frac{\mathrm{d}^4 \Gamma(B_s^0 \to J/\psi \phi)}{\mathrm{d}t \,\mathrm{d}\cos\theta \,\mathrm{d}\varphi \,\mathrm{d}\cos\psi} \equiv \frac{\mathrm{d}^4 \Gamma}{\mathrm{d}t \,\mathrm{d}\Omega} \propto \sum_{k=1}^{10} h_k(t) f_k(\Omega) \,.$

k	$h_k(t)$	$f_k(heta,\psi,arphi)$
1	$ A_0 ^2(t)$	$2\cos^2\psi\left(1-\sin^2\theta\cos^2\phi\right)$
2	$ A_{\parallel}(t) ^2$	$\sin^2\psi\left(1-\sin^2\theta\sin^2\phi\right)$
3	$ A_{\perp}(t) ^2$	$\sin^2\psi\sin^2 heta$
4	$\Im(A_{\parallel}(t) A_{\perp}(t))$	$-\sin^2\psi\sin2\theta\sin\phi$
5	$\Re(A_0(t) A_{\parallel}(t))$	$\frac{1}{2}\sqrt{2}\sin 2\psi\sin^2\theta\sin 2\phi$
6	$\Im(A_0(t) A_\perp(t))$	$\frac{1}{2}\sqrt{2}\sin 2\psi\sin 2\theta\cos\phi$
7	$ A_s(t) ^2$	$\frac{2}{3}(1-\sin^2\theta\cos^2\phi)$
8	$\Re(A_s^*(t)A_{\parallel}(t))$	$\frac{1}{3}\sqrt{6}\sin\psi\sin^2\theta\sin 2\phi$
9	$\Im(A_s^*(t)A_{\perp}(t))$	$\frac{1}{3}\sqrt{6}\sin\psi\sin2\theta\cos\phi$
10	$\Re(A_s^*(t)A_0(t))$	$\frac{4}{3}\sqrt{3}\cos\psi(1-\sin^2\theta\cos^2\phi)$

$$|A_0|^2(t) = |A_0|^2 e^{-\Gamma_s t} \left[\cosh\left(\frac{\Delta\Gamma}{2}t\right) - \cos\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) + \sin\phi_s \sin(\Delta m t)\right], \tag{4}$$

$$|A_{\parallel}(t)|^2 = |A_{\parallel}|^2 e^{-\Gamma_s t} \left[\cosh\left(\frac{\Delta\Gamma}{2}t\right) - \cos\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) + \sin\phi_s \sin(\Delta m t)\right], \tag{5}$$

$$|A_{\perp}(t)|^2 = |A_{\perp}|^2 e^{-\Gamma_s t} \left[\cosh\left(\frac{\Delta\Gamma}{2}t\right) + \cos\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi_s \sin(\Delta m t)\right], \tag{6}$$

$$\Im(A_{\parallel}(t) A_{\perp}(t)) = |A_{\parallel}| |A_{\perp}| e^{-\Gamma_s t} [-\cos(\delta_{\perp} - \delta_{\parallel}) \sin \phi_s \sinh\left(\frac{\Delta \Gamma}{2}t\right) -\cos(\delta_{\perp} - \delta_{-\parallel}) \cos \phi_s \sin(\Delta m t) + \sin(\delta_{\perp} - \delta_{\parallel}) \cos(\Delta m t)], \qquad (7)$$

$$\Re(A_0(t) A_{\parallel}(t)) = |A_0||A_{\parallel}|e^{-\Gamma_s t} \cos(\delta_{\parallel} - \delta_0) [\cosh\left(\frac{\Delta\Gamma}{2}t\right) - \cos\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) + \sin\phi_s \sin(\Delta m t)], \qquad (8)$$

$$\Im(A_0(t) A_{\perp}(t)) = |A_0| |A_{\perp}| e^{-\Gamma_s t} [-\cos(\delta_{\perp} - \delta_0) \sin \phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) -\cos(\delta_{\perp} - \delta_0) \cos \phi_s \sin(\Delta m t) + \sin(\delta_{\perp} - \delta_0) \cos(\Delta m t)],$$
(9)

$$|A_s(t)|^2 = |A_s|^2 e^{-\Gamma_s t} \left[\cosh\left(\frac{\Delta\Gamma}{2}t\right) + \cos\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi_s \sin(\Delta m t)\right], \tag{10}$$

$$\Re(A_s^*(t)A_{\parallel}(t)) = |A_s||A_{\parallel}|e^{-\Gamma_s t}[-\sin(\delta_{\parallel} - \delta_s)\sin\phi_s\sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin(\delta_{\parallel} - \delta_s)\cos\phi_s\sin(\Delta m t) + \cos(\delta_{\parallel} - \delta_s)\cos(\Delta m t)],$$
(11)

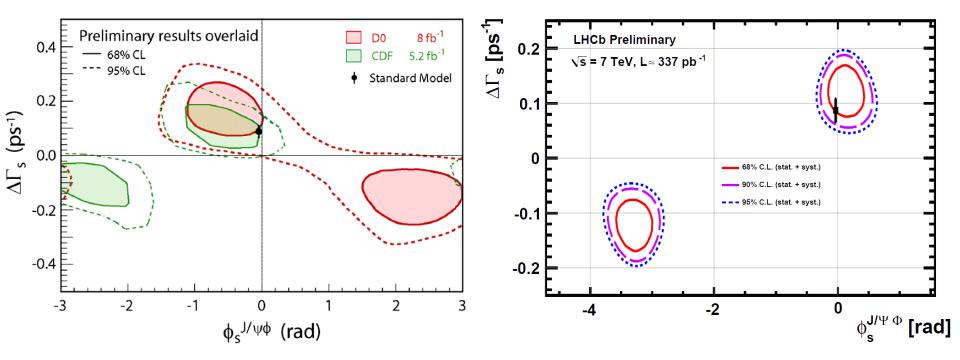
$$\Im(A_s^*(t)A_{\perp}(t)) = |A_s||A_{\perp}|e^{-\Gamma_s t}\sin(\delta_{\perp} - \delta_s)[\cosh\left(\frac{\Delta\Gamma}{2}t\right) + \cos\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi_s \sin(\Delta m t)], \qquad (12)$$

$$\Re(A_s^*(t)A_0(t)) = |A_s||A_0|e^{-\Gamma_s t}[-\sin(\delta_0 - \delta_s)\sin\phi_s\sinh\left(\frac{\Delta\Gamma}{2}t\right) -\sin(\delta_0 - \delta_s)\cos\phi_s\sin(\Delta m t) + \cos(\delta_0 - \delta_s)\cos(\Delta m t)].$$
(13)

VU

Lake Louise, 21st February 2012

46

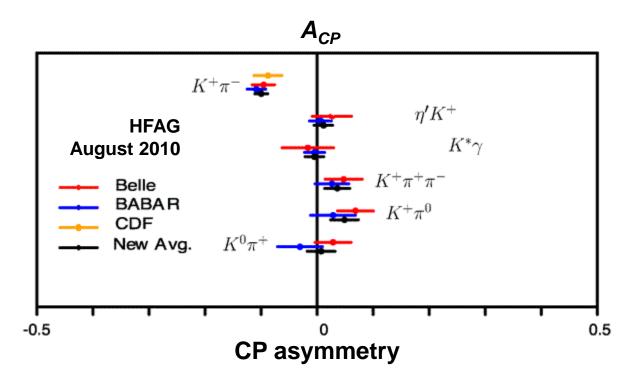

2011

2010

EF

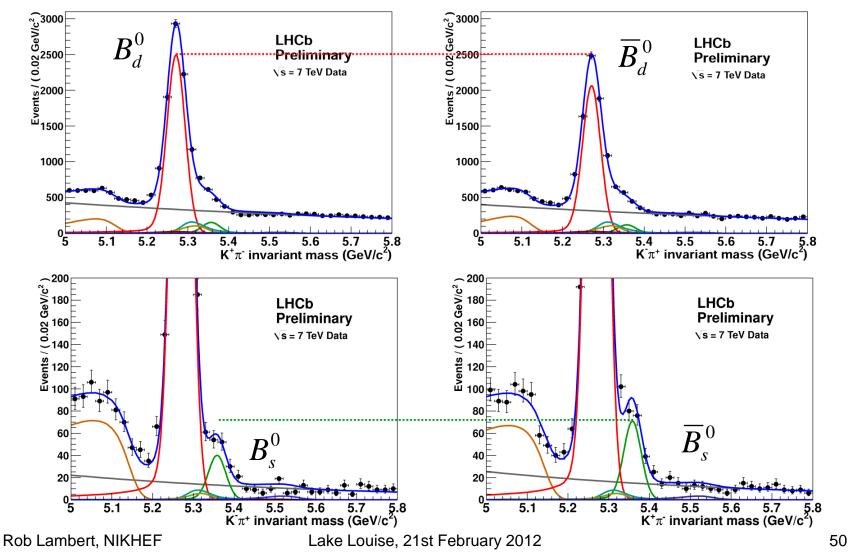
VU 🖌

FOM


Upcoming very interesting results...

Upcoming (1)

- CP-asymmetry in decays (Direct CP-violation)
- > Interesting hint: the $B \rightarrow K\pi$ "puzzle"


> LHCb poised to make a similar measurement, keep watching!

CPV by eye

From the LHCb public page

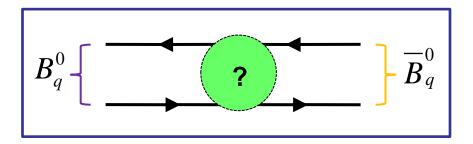
Upcoming (2)

 ${\rm Fermilab}\text{-}{\rm Pub}\text{-}10/114\text{-}{\rm E}$

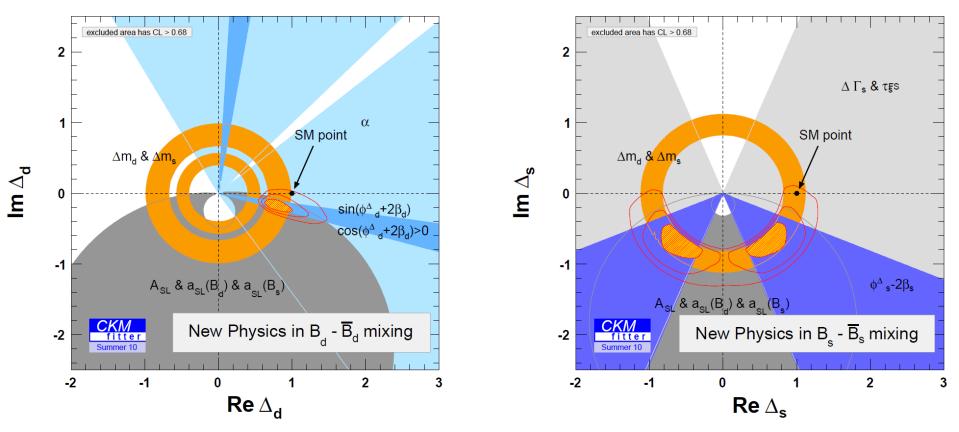
Evidence for an anomalous like-sign dimuon charge asymmetry

V.M. Abazov,³⁶ B. Abbott,⁷⁴ M. Abolins,⁶³ B.S. Acharya,²⁹ M. Adams,⁴⁹ T. Adams,⁴⁷ E. Aguilo,⁶ G.D. Alexeev,³⁶ G. Alkhazov,⁴⁰ A. Alton^a,⁶² G. Alverson,⁶¹ G.A. Alves,² L.S. Ancu,³⁵ M. Aoki,⁴⁸ Y. Arnoud,¹⁴ M. Arov,⁵⁸ A. Askew,⁴⁷ B. Åsman,⁴¹ O. Atramentov,⁶⁶ C. Avila,⁸ J. BackusMayes,⁸¹ F. Badaud,¹³ L. Bagby,⁴⁸ B. Baldin,⁴⁸ D.V. Bandurin,⁴⁷ S. Banerjee,²⁹ E. Barberis,⁶¹ A.-F. Barfuss,¹⁵ P. Baringer,⁵⁶ J. Barreto,² J.F. Bartlett,⁴⁸ U. Bassler,¹⁸ S. Beale,⁶ A. Bean,⁵⁶ M. Begalli,³ M. Begel,⁷² C. Belanger-Champagne,⁴¹ L. Bellantoni,⁴⁸ J.A. Benitez,⁶³ S.B. Beri,²⁷ G. Bernardi,¹⁷ R. Bernhard,²² I. Bertram,⁴² M. Besançon,¹⁸ R. Beuselinck,⁴³

We measure the charge asymmetry A of like-sign dimuon events in 6.1 fb⁻¹ of $p\overline{p}$ collisions recorded with the D0 detector at a center-of-mass energy $\sqrt{s} = 1.96$ TeV at the Fermilab Tevatron collider. From A, we extract the like-sign dimuon charge asymmetry in semileptonic *b*-hadron decays: $A_{\rm sl}^b = -0.00957 \pm 0.00251$ (stat) ± 0.00146 (syst). This result differs by 3.2 standard deviations from the standard model prediction $A_{\rm sl}^b(SM) = (-2.3^{+0.5}_{-0.6}) \times 10^{-4}$ and provides first evidence of anomalous CP-violation in the mixing of neutral B mesons.


PACS numbers: 13.25.Hw; 14.40.Nd

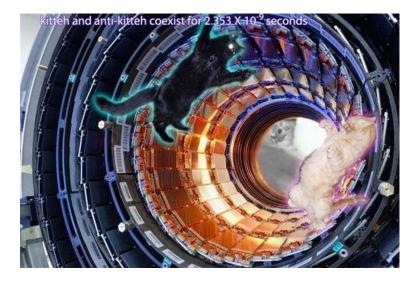
Suprize! ... is it new physics? First let's compare with other measurements...


Remember mixing is a loop-level process

- Mixing can be modified in both magnitude and phase
- > Define a complex number parameter Δ_q for the new physics
- Just like we did with the CKM
 - Collect all the measurements together
 - Plot all at once in 2D (complex plane)

> SM was **disfavoured** by 3.6 σ , due to DØ result....

> LHCb poised to make a similar measurement, keep watching!

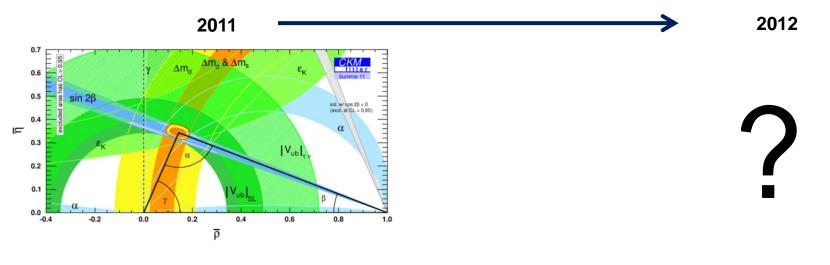

If it's true?

- Not just new physics
 - CP-violating new physics beyond any SM shoe-horning
 - Leptoquarks?
 - Unparticles?
 - Completely unexplored new physics?

Heeeere's new physics!

In a way it's exactly what we need!

Nobody has even invented the chew-toy!!!



Summary and Outlook

- What did we learn?
 - The SM is a poor description of reality
 - It is a surprize that the SM works so well in particle physics!
 - There *must* be new physics and it *must* violate CP
 - Precision experiments probe energy scales others cannot!
- The LHC is a heavy-flavour factory
 - The first year's results already rule out classes of NP models

Backups are often required

Further References

- ➤ LHCb:
 - $B_s \rightarrow \mu\mu$ first result: <u>http://arxiv.org/abs/1103.2465</u>
 - Detector paper: J. of Instrumentation (No. 3 pp. S08005P)
 - "Roadmap" of physics analyses: arXiv:0912.4179
 - Chapter 2: γ
 - Chapter 3: $B \rightarrow K\pi$
 - Chapter 5: $B_{s/d} \rightarrow \mu \mu$
 - Chapter 6: K^{*} μμ
 - ∆A_{fs} studies:
 - R.W. Lambert, CERN-THESIS-2009-001
 - N. Brook et al., CERN-LHCb-2007-054
- CPLear: Kaon mixing: <u>Physics Reports, Volume 374, Issue 3, Pages 165-270 (January 2003)</u>
- Experimental averages:
 - CKM fitter group : <u>http://ckmfitter.in2p3.fr/</u>
 - HFAG (B → Kπ): <u>http://www.slac.stanford.edu/xorg/hfag/rare/ichep10/acp/index.html</u>
- More on B→Kπ
 - Theory Status: S. Mishima from CKM 2010, arXiv:1101.1501
 - New Physics : S. Baek *et al.*, arXiv:hep-ph/0412086
- > CDF $B_{s/d} \rightarrow \mu\mu$: CDF Public Note 9892 (preliminary)

Interesting reading...

- General texts:
 - The BaBar physics book, <u>SLAC-R-504</u>
- Recent papers:
 - DØ measurement of A^b, 3.2σ deviation from the SM (May 2010) Evidence for an anomalous like-sign dimuon charge asymmetry PRL. 105, 081801 (2010)
 - Nierste and Lenz B-mixing update (Feb 2011) Numerical updates of lifetimes and mixing parameters of B mesons hep-ph arxiv:1102.4274
 - WMAP 7-year sky maps (Feb 2011) Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Sky Maps, Systematic Errors, and Basic Results Jarosik, N., et.al., 2011, ApJS, 192, 14

Acknowledgements

- Wolf Reichter (wolfsbodymagic.com) for photo editing
- Victoria Gugenheim (gugenheim.co.uk) for editorial notes
- Ceres photo courtesy of NASA (hubble)
- ➤ WMAP poster, WMAP and NASA
- Laika photo is public domain
- "The Shining" Stanley Kubrick pictures. All rights reserved.

A_{fs}?

Rob Lambert, NIKHEF

Lake Louise, 21st February 2012

- 1. pp-interactions within a symmetric experiment
- 2. Correct all experimental biases (magnets, mis-id ...)
- 3. Observe $N(\mu^+\mu^+) \neq N(\mu^-\mu^-)$
- 4. In the SM, the favoured way to make charge asymmetry is if: $b\overline{b} \longrightarrow \mu^+ \mu^+ \neq b\overline{b} \longrightarrow \mu^- \mu^-$
- 5. Which comes from B⁰-mixing:

 $b\overline{b} \Rightarrow \overline{B}{}^{0}B^{0} \sim \overline{B}{}^{0}\overline{B}{}^{0} \rightarrow \mu^{+}\mu^{+}X \quad \neq \quad b\overline{b} \Rightarrow \overline{B}{}^{0}B^{0} \sim B^{0}B^{0} \rightarrow \mu^{-}\mu^{-}X$

> In the standard model it is almost negligible

$$A^{b} \approx \frac{a_{fs}^{s} + a_{fs}^{d}}{2}$$
 $SM = (-2.0 \pm 0.3) \times 10^{-4}$ $D\emptyset \approx (-1 \pm 0.3)\%$

Rob Lambert, NIKHEF

Lake Louise, 21st February 2012

- \succ a_{fs} is very sensitive to new physics (NP) even if:
 - Tree-level processes are SM-dominated
 - SM flavour structure
 - Unitary CKM
- With very weird scenarios (like leptoquarks)
 - Probe NP mixing, interference and/or decays
- Usual formula is modified:

$$a^{SM} \approx \operatorname{Im}\left\{\frac{\Gamma_{12}^{SM}}{M_{12}^{SM}}\right\}$$

- \succ a_{fs} is very sensitive to new physics (NP) even if:
 - Tree-level processes are SM-dominated
 - SM flavour structure
 - Unitary CKM
- With very weird scenarios (like leptoquarks)
 - Probe NP mixing, interference and/or decays
- \succ If we allow a single NP phase in the mixing Θ

$$a^{NP} \approx \operatorname{Im}\left\{\frac{\Gamma_{12}^{SM}}{M_{12}^{SM}}\right\} \cos\Theta - \operatorname{Re}\left\{\frac{\Gamma_{12}^{SM}}{M_{12}^{SM}}\right\} \sin\Theta$$

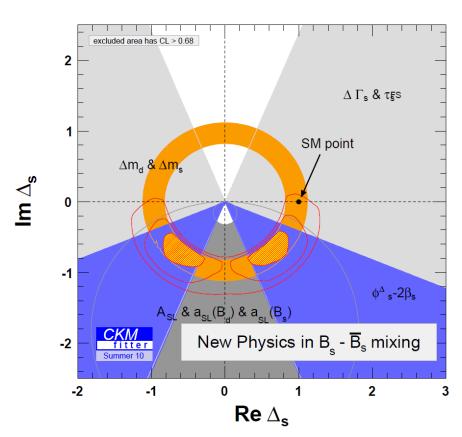
- \succ a_{fs} is very sensitive to new physics (NP) even if:
 - Tree-level processes are SM-dominated
 - SM flavour structure
 - Unitary CKM
- With very weird scenarios (like leptoquarks)
 - Probe NP mixing, interference and/or decays
- \succ If we allow a single NP phase in the mixing Θ
 - (first part is just the SM value)

$$a^{NP} \approx a_{fs}^{SM} \cos \Theta - \operatorname{Re}\left\{\frac{\Gamma_{12}^{SM}}{M_{12}^{SM}}\right\} \sin \Theta$$

- \succ a_{fs} is very sensitive to new physics (NP) even if:
 - Tree-level processes are SM-dominated
 - SM flavour structure
 - Unitary CKM
- With very weird scenarios (like leptoquarks)
 - Probe NP mixing, interference and/or decays
- \succ If we allow a single NP phase in the mixing Θ
 - (first part is just the SM value)

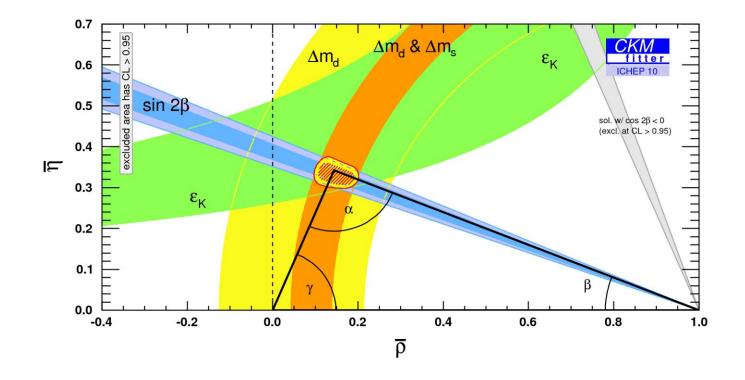
$$a^{NP} \approx 2.1 \times 10^{-5} \cos \Theta + 4.0 \times 10^{-3} \sin \Theta$$

Up to 200-times the SM!!! [[[... still... < DØ measurement]]]</p>



- $\geq B_s^0 \rightarrow J/\psi \Phi$
 - Directly Measure sin ϕ_s
 - σ(φ_s) = 0.05^c in 1 fb⁻¹
- $\succ a_{fs}^{s}$
 - Effectively Measures

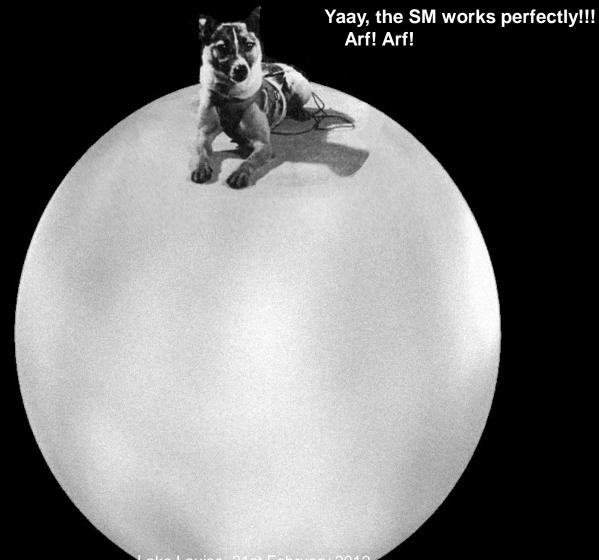
$$\operatorname{Im}\left\{\frac{\Gamma_{12}}{M_{12}}\right\}\cos\Theta - \operatorname{Re}\left\{\frac{\Gamma_{12}}{M_{12}}\right\}\sin\Theta$$


• σ(Θ) = 0.5^c in 1 fb⁻¹

- But they constrain NP differently
 - Effective power enhanced
 - NB physical limit of a_{fs} is at $4x10^{-3} < current D\emptyset$ result!

- Check loop-level observables
- Would need a very accurate determination of dmd/dms

Penultimate slide



Woof?

Rob Lambert, NIKHEF