Flavour Physik als Schlüssel zu "Neuer Physik"

Ulrich Kerzel (CERN)

Flavour Physik

Das Standard Model (SM) beschreibt die fundamentalen Teilchen (Quarks, Leptonen) und ihre Wechselwirkung.

- Flavour Theorie von Cabibbo, Kobayashi und Maskawa (Nobelpreis 2008)
 Flavour Eigenzustände (schwache WW) sind Überlagerung der Massen Eigenzustände, verbunden durch CKM Matrix
 - CKM Matrix ist complex and unitär:
 4 unabhängige Parameter
 - → 3 Winkel + 1 Phase → CKM Dreieck

T. Maskawa M. Kobayashi

Für η≠ 0
➡ CP Verletzung
➡ Materie und Anti-Materie verhalten sich nicht gleich

Flavour Physik

Volume 192, number 1,2	PH	PHYSICS LETTERS B		
Table 3				
Limits on parameters consist	ent with the observed mixing	ate.		
	Parameters	Comments		
	r>0.09(90%CL)	this experiment		
	<i>x</i> >0.44	this experiment		
	$B^{1/2} f_{\rm B} \approx f_{\pi} < 160 {\rm MeV}$	B meson (\approx pion) decay constant		
	$m_{\rm b}$ < 5 GeV/ c^2	b-quark mass		
	$\tau < 1.4 \times 10^{-12} s$	B meson lifetime		
	V < 0.018	Kobayashi-Maskawa matrix element		
	$\eta_{\rm OCD} < 0.86$	QCD correction factor ^{a)}		

Flavour Physik in der Vergangenheit:

- CP Verletzung \rightarrow 3 Generationen
- B Mischung → Top quark ist schwer.

 (Argus Collaboration, 1987)
- ➡ Flavour Physik zur Suche nach NP!

Ø Derzeit:

- Sehr konsistentes Bild
- Beeindruckende Resultate von B Fabriken (BaBar, Belle), Tevatron (CDF, DO) und LHC

Dennoch viele Fragen offen....
 Woher kommen die CKM Parameter?
 Was ist der Ursprung der CP Verletzung?
 SM Wert zu klein, um kosmische Materie zu erklären ... ?

Präzisonsmessungen

4

Kick Stimmt alles überein?

alle experimentellen __Ergebnisse berücksichtigt

der gleiche Fit ohne sin(2β)

Kick Stimmt alles überein?

6

Meue Physik in B_s Mischung?

 Betrachte semi-leptonische Zerfälle mit μ im Endzustand
 Vorhersage im Standardmodell (Nierste / Lenz) Asl = (-0.20 ± 0.03)*10⁻³

Messung von DO: 3.9σ von Vorhersage entfernt.

 $A_{\rm sl}^b = (-0.787 \pm 0.172 \text{ (stat)} \pm 0.093 \text{ (syst)})\%.$

7 – 14 TeV pp Kollisionen

b Quark Produktion am LHC

- Grosser b Wirkungsquerschnitt
 (≈ 284 ± 53µb at √s = 7TeV [PLB 694 209])
 ⇒ Sehr effizienter (und selektiver!) Trigger nötig
- Alle B Hadronen B^0 , B_s , B_c , Λ_b) werden erzeugt

LHCD

Die Detektoren

9

② 2 "General Purpose" Detektoren: ATLAS, CMS

2 spezialisierte Detektoren: ALICE, LHCb

LHCb

Der LHCb Detektor

LHCb

Komplementäre Detektoren

LHCb und ATLAS / CMS bedecken unterschiedliche
 Rapidität
 Resultate der Experimente ergänzen sich

Resultate der Experimente ergänzen sich.

11

Typische Ereignisse

LHCb Event Display

LHCb: VELO halb offen

ATLAS 4µ Ereignis

beam-qas Ereignisse

Injection

Physics

12

Kick Luminosität at LHC(b)

LHCb liefert exzellente Daten
 Arbeitspunkt bei ca. 2x Design
 Lumi-Levelling nutzt Strahlzeit
 optimal für Flavourphysik
 2012 auch bei ATLAS / CMS ?

(q) 1.8 1.6 1.6 1.6 1.4 1.2 1.4 1.2 1.4 1.2 1.4 1.4 1.2 1.4 1.4 1.2 1.4 1.

LHCb Integrated Luminosity at 3.5 TeV in 2011

Kick Luminosität at LHC(b)

Was bedeutet "LHCb hat ca. 1fb⁻¹ Daten" ? Wirkungsquerschnitt in LHCb Akzeptanz 𝔅 σ(pp→bbX) = (75.3 ± 5.4 ±13.0) µb (PLB 694 (2010) 209) d.h. 10¹⁵ * 75.3 10⁻⁶ ≈ 10¹¹ bb Paare Zum Vergleich: Babar + Belle zusammen: Also: LHCb hat bereits jetzt den weltgrößten Datensatz ø ... für Kanäle mit nicht zu kleine Trigger-, Rekonstruktions-, Selektionseffizienz ...

Invariante µµ Masse

Kick CP Verletzung in Charm

- 3 Arten von CP Verletzung:
 - 1. Beim Zerfall: Amplituden unterschiedlich für ladungs-konjugierte Zustände
 - 2. Mischung: Rate für $\overline{D^0} \rightarrow \overline{D^0}$ und $\overline{D^0} \rightarrow \overline{D^0}$ unterschiedlich
 - 3. Interferenz von Mischung und Zerfall
- CP Verletzung ist klein im Standard-Modell
 ~10⁻⁴ ... 10⁻³ für (1)
 < 10⁻³ für (2) / (3)

LHC reveals hints of 'new physics' in particle decays

By Jason Palmer Science and technology reporter, BBC News

• Experimentell: $A_{RAW}(f)^* = A_{CP}(f) + A_D(f) + A_D(\pi_s) + A_P(D^{*+})$ für 2 Endzustände in $D^* \rightarrow D^0(f) \pi_s$: $D^0 \rightarrow K^+K^-$ und $\pi^+\pi^-$ • Asymmetrie in D^* Produktion (A_P), Pion Nachweis ($A_D(\pi_s)$) fällt weg • Keine Detektorasymmetrie ($A_D(f)$) für $D^0 \rightarrow K^+K^-$ und $\pi^+\pi^-$

Kick CP Verletzung in Charm

ΔA_{CP} = -0.82 ± 0.21 (stat) ± 0.11 % [hep-ex/1112.0938] 3.5σ von Null verschieden ... aber Standard-Modell Vorhersage schwierig! Mehr Details: Separater Vortrag von M. Gersabeck

CKM Winkel Y

Erster Schritt: Messe die Verzweigungsverhältnisse (LHCb-CONF-2011-057)

 $\mathcal{B}(B_s^0 \to D_s^{\mp} K^{\pm}) = (1.97 \pm 0.18 \text{ (stat.)} ^{+0.19}_{-0.20} \text{ (syst.)} ^{+0.11}_{-0.10} (f_s/f_d)) \times 10^{-4}$

CP Verletzung in B

- Bisher nur wenige "5σ" Beobachtungen von CP Verletzung
 sin(2β) in B⁰ → J/ΨK (BaBar & Belle)

LHCb

weltbeste Messung mit 1/3 LHCb Datensatz !

the CP Verletzung in Bs Mischung

Eigenzustände der schwachen WW (B_(s), B_(s)) ≠ Masseneigenzustände (B_H, B_L)
 Mischung bestimmt durch 3 Parameter
 Δm = m_H - m_L

⊘ Standard Modell: $\Delta m_s = 17.3 \pm 2.6 \text{ ps}^{-1}$

 $\oslash \Delta \Gamma = \Gamma_L - \Gamma_H$

Standard – Modell: $\Delta\Gamma_s = 0.087 \pm 0.021 \text{ ps}^{-1} > 0 \phi_s$: CP verletzende Phase

 $\phi_s = 0$: Masseneingezustände = CP Eigenzustände
 Standard-Modell: $\phi_s = -0.036 \pm 0.002$

SM Vorhersagen: Lenz & Nierste (hep-ph/1102.4274)

CP Verletzung in B_s Mischung Experimentelle Situation (vor Sommer 2011)

Alle Ergebnisse
 kompatibel (~1σ) mit SM
 ⇒ aber Trend in die
 gleiche Richtung ...

Flavour-Tagging

Mischungsanalyse benötigt Wissen über den Eigenzustand des B Mesons bei seiner Entstehung und Zerfall, i.e. B⁰ oder anti-B⁰
Flavour Tagging (arXiv:1202.4979)
In B_s → D_s ∏ (arXiv:1112.4311)
OS: (3.2 ± 0.8)%
SS: (1.3 ± 0.4)%

Vergleiche CDF: $\Delta m_s = 17.77 \pm 0.10 \pm 0.07 \text{ ps}^{-1}$ (PRL 97 242003)

 \boldsymbol{C}

S

W

b

 B_s^0

J/

Kick CP Verletzung in B_s Mischung

$\mathrm{d}^4\Gamma(B^0_s\to J/\psi\phi)$	$= \frac{\mathrm{d}^4\Gamma}{\sim} \propto$	$\sum_{h=0}^{10} h_{1}(t) f_{1}(0)$
$\overline{\mathrm{d}t\mathrm{d}\cos\theta\mathrm{d}\varphi\mathrm{d}\cos\psi}$	$= \frac{1}{\mathrm{d}t \ \mathrm{d}\Omega} \propto$	$\sum_{k=1}^{n_k(\ell)} J_k(2\ell).$

$$|A_{0}|^{2}(t) = |A_{0}|^{2}e^{-\Gamma_{s}t}\left[\cosh\left(\frac{\Delta\Gamma}{2}t\right) - \cos\phi_{s}\sinh\left(\frac{\Delta\Gamma}{2}t\right) + \sin\phi_{s}\sin(\Delta mt)\right],$$

$$|A_{\parallel}(t)|^{2} = |A_{\parallel}|^{2}e^{-\Gamma_{s}t}\left[\cosh\left(\frac{\Delta\Gamma}{2}t\right) - \cos\phi_{s}\sinh\left(\frac{\Delta\Gamma}{2}t\right) + \sin\phi_{s}\sin(\Delta mt)\right],$$

$$|A_{\perp}(t)|^{2} = |A_{\perp}|^{2}e^{-\Gamma_{s}t}\left[\cosh\left(\frac{\Delta\Gamma}{2}t\right) + \cos\phi_{s}\sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi_{s}\sin(\Delta mt)\right],$$

$$(\Delta\Gamma)$$

$$\Im(A_{\parallel}(t) A_{\perp}(t)) = |A_{\parallel}| |A_{\perp}| e^{-\Gamma_s t} [-\cos(\delta_{\perp} - \delta_{\parallel}) \sin \phi_s \sinh\left(\frac{\Delta T}{2}t\right) -\cos(\delta_{\perp} - \delta_{-}\|) \cos \phi_s \sin(\Delta m t) + \sin(\delta_{\perp} - \delta_{\parallel}) \cos(\Delta m t)$$

$$\Re(A_0(t) A_{\parallel}(t)) = |A_0| |A_{\parallel}| e^{-\Gamma_s t} \cos(\delta_{\parallel} - \delta_0) \left[\cosh\left(\frac{\Delta\Gamma}{2}t\right) - \cos\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) + \sin\phi_s \sin(\Delta m t)\right],$$

$$\Im(A_0(t) A_{\perp}(t)) = |A_0| |A_{\perp}| e^{-\Gamma_s t} [-\cos(\delta_{\perp} - \delta_0) \sin \phi_s \sinh\left(\frac{\Delta \Gamma}{2}t\right) -\cos(\delta_{\perp} - \delta_0) \cos \phi_s \sin(\Delta m t) + \sin(\delta_{\perp} - \delta_0) \cos(\Delta m t)],$$

$$|A_s(t)|^2 = |A_s|^2 e^{-\Gamma_s t} \left[\cosh\left(\frac{\Delta\Gamma}{2}t\right) + \cos\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi_s \sin(\Delta m t)\right],$$

$$\Re(A_s^*(t)A_{\parallel}(t)) = |A_s||A_{\parallel}|e^{-\Gamma_s t}[-\sin(\delta_{\parallel} - \delta_s)\sin\phi_s\sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin(\delta_{\parallel} - \delta_s)\cos\phi_s\sin(\Delta m t) + \cos(\delta_{\parallel} - \delta_s)\cos(\Delta m t)],$$

$$\Im(A_s^*(t)A_{\perp}(t)) = |A_s||A_{\perp}|e^{-\Gamma_s t}\sin(\delta_{\perp} - \delta_s)\left[\cosh\left(\frac{\Delta\Gamma}{2}t\right) + \cos\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi_s \sin(\Delta m t)\right],$$

$$\Re(A_s^*(t)A_0(t)) = |A_s||A_0|e^{-\Gamma_s t} [-\sin(\delta_0 - \delta_s)\sin\phi_s\sinh\left(\frac{\Delta\Gamma}{2}t\right) -\sin(\delta_0 - \delta_s)\cos\phi_s\sin(\Delta m t) + \cos(\delta_0 - \delta_s)\cos(\Delta m t)].$$

k	$h_k(t)$	$f_k(heta,\psi,arphi)$
1	$ A_0 ^2(t)$	$2\cos^2\psi\left(1-\sin^2\theta\cos^2\phi\right)$
2	$ A_{\parallel}(t) ^2$	$\sin^2\psi\left(1-\sin^2\theta\sin^2\phi\right)$
3	$ A_{\perp}(t) ^2$	$\sin^2\psi\sin^2\theta$
4	$\Im(A_{\parallel}(t) A_{\perp}(t))$	$-\sin^2\psi\sin 2\theta\sin\phi$
5	$\Re(A_0(t) A_{\parallel}(t))$	$\frac{1}{2}\sqrt{2}\sin 2\psi\sin^2\theta\sin 2\phi$
6	$\Im(A_0(t) A_\perp(t))$	$\frac{1}{2}\sqrt{2}\sin 2\psi\sin 2\theta\cos\phi$
7	$ A_s(t) ^2$	$\frac{2}{3}(1-\sin^2\theta\cos^2\phi)$
8	$\Re(A_s^*(t)A_{\parallel}(t))$	$\frac{1}{3}\sqrt{6}\sin\psi\sin^2\theta\sin 2\phi$
9	$\Im(A_s^*(t)A_{\perp}(t))$	$\frac{1}{3}\sqrt{6}\sin\psi\sin2\theta\cos\phi$
10	$\Re(A_s^*(t)A_0(t))$	$\frac{4}{3}\sqrt{3}\cos\psi(1-\sin^2\theta\cos^2\phi)$

beliebig viele Vorzeichenfehler möglich...

➡ 3 unabhängige Analysen

Hick CP Verletzung in B_s Mischung

 Somplementär: B_s → J/Ψ f₀
 Vorteil: Endzustand ist Vektor - Pseudoskalar
 keine Winkelanalyse nötig
 Nachteil:
 Braucht ΔΓ_s als externen Parameter
 Kleineres Verzweigungsverhältnis (~1/4 von B_s → J/Ψ φ)

CP Verletzung in B_s Mischung © Ergebnis:

 $\phi_s = 0.07 \pm 0.17 \pm 0.06$ rad (combined).

Hick CP Verletzung in B_s Mischung

Zweifache Ambiguität im Resultat
Eine Lösung: Kompatibel mit Standard Modell
Andere Lösung: Inkompatibel mit SM, Neue Physik!
aber welche ?
Auflösung de. Ambiguität:
Idee: Schneller Phasenwechsel beim Durchlaufen der φ→K+K- βesonanz. (β-oWelle), kaum Änderung für-o, K+K- s-Wellen Beitrag

29

 Differenz monoton fallend für physikalische Lösung

$m_{\rm KK}$ (MeV) CP Verletzung in Bs Mischung

1040

1050

Phasendifferenz für beide Lösungen:

1030

qe

990

0

1000

1010

1020

→ B_s Mischung ist kompatibel mit dem Standard Modell Ø Aber: Exp. Unsicherheit noch um Größenordnung höher als theoretische Vorhersage ⇒ noch viel Raum für neue Effekte

Mich CP Verletzung in B_s Mischung

HCB Effektive B_s Lebensdauer

 Ø Komplementärer Zugang zur Suche nach Neuer Physik in B_s Mischung
 Ø Definiere die effektive Lebensdauer in B_s→K⁺K⁻ (kein Flavour-Tagging nötig)

$$\tau_f \equiv \frac{\int_0^\infty t \, \langle \Gamma(B_s(t) \to f) \rangle \, dt}{\int_0^\infty \langle \Gamma(B_s(t) \to f) \rangle \, dt} = \frac{R_{\rm L}^f / \Gamma_{\rm L}^{(s)2} + R_{\rm H}^f / \Gamma_{\rm H}^{(s)2}}{R_{\rm L}^f / \Gamma_{\rm L}^{(s)} + R_{\rm H}^f / \Gamma_{\rm H}^{(s)}}$$
$$\frac{\tau_f}{\tau_{B_s}} = \frac{1}{1 - y_s^2} \left(\frac{1 + 2\mathcal{A}_{\Delta\Gamma}^f y_s + y_s^2}{1 + \mathcal{A}_{\Delta\Gamma}^f y_s} \right) = 1 + \mathcal{A}_{\Delta\Gamma}^f y_s + \left[2 - (\mathcal{A}_{\Delta\Gamma}^f)^2 \right] y_s^2 + \mathcal{O}(y_s^3)$$

 Standard-Modell Vorhersage
 T_{eff} = 1.390 ± 0.032 ps mit: T_B = 1.477 ± 0.022
 R. Fleischer et al. hep-ph/1011.1096, hep-ph/1109.5115

$\frac{1100}{1000}$ Effektive B_s Lebensdauer

 Experimentell: 3 Methoden
 Akzeptanzkorrektur mittels "swimming" Messe die Akzeptanz pro Ereignis und kompensiere in der Analyse \oslash Relative Messung $B_s \rightarrow KK$ vs $B_d \rightarrow \pi K$ Beide Kanäle haben die gleiche Topologie gleiche Akzeptanzfunktion Spezieller Trigger (neu in 2011) Ø Vermeide alle Variablen, die eine Akzeptanzkorrektur nötig machen Onterdrückung des Untergrunds mittels Neuronaler Netze (NeuroBayes)

$\frac{HCb}{R}$ Effektive B_s Lebensdauer

 Akzeptanzkorrektur mittels "swimming"
 Im einzelnen Ereignis wird der B Kandidat entweder akzeptiert – oder nicht
 Akzeptanz ist eine (Serie von) Stufenfuntion(en)

Zuerst am SPS R. Bailey, et al., Z. Phys. C 28 (1985) 357. und CDF Nucl. Instrum. Meth. A 570 (2007) 525, Phys. Rev. D 83 (2011) 032008,

Für alle Ereignisse ergibt sich dann die mittlere Akzeptanz

HCB Effektive B_s Lebensdauer

 Ø Relative Messung:
 Ø B_s→KK und B_d→πK haben die gleiche Topologie (Kaon vs pion im Endzustand)
 ➡ gleiche Akzeptanzfunktion
 ➡ Akzeptanz entfällt im Verhältnis.

Effektive B_s Lebensdauer Ergebnisse (~37pb⁻¹, aufgezeichnet in 2010) PLB 707 (2012) 349-356

 $\tau_{KK} = 1.440 \pm 0.096 \text{ (stat)} \pm 0.008 \text{ (syst)} \pm 0.003 \text{ (model) ps.}$

Modellfehler"

Triggerakzeptanz verwirft Ereignisse bei τ ≈ 0
 ⇒ sensitiv zum Verhaeltnis B_L und B_H

High Effektive B_s Lebensdauer

Interpretation (Fleischer hep-ph/1109.5115)

Eff. Lebensdauer schränkt $\Delta\Gamma$ – Φ s Ebene ein

τ_{eff}(J/ψf₀): CDF hep-ex/1106.3682 Zusammen mit $B_s \rightarrow J/\psi\phi$ Mischungsanalyse

$\frac{HCb}{MCb}$ Effektive B_s Lebensdauer

Ø Neu in 2011: Dedizierter Trigger für B_s →K⁺K⁻

Herausforderungen:

Keine Variablen, die die gemessene Lebensdauer beeinflussen

- Die mächtigsten Variablen zur Unterdrückung des Untergrunds können nicht verwendet werden.
- Teilchen-ID unerlässlich

➡ aber zu langsam, um alle Ereignisse im Trigger zu betrachten.

 Lösung: 2 konsekutive Neuronale Netze (NeuroBayes) bereits im Trigger (HLT2)

- Ø Netz 1: Kinematik: p, pt, Helizitätswinkel, ...
- Netz 2: Kinematik + Teilchen ID

$\frac{HCb}{HCb}$ Effektive B_s Lebensdauer

Flache Akzeptanz bzgl. Lebensdauer der Netze

LHCb-CONF-2012-001

Weitere neuronale Netze zur Ereignisselektion auf rekonstruierten Daten.

IHCh

$B_{(s)} \rightarrow \mu^+ \mu^-$

Sehr seltener Zerfallskanal Doppelt unterdrückt: FCNC und Helizitaet Dennoch genaue Standard-Modell Vorhersage 𝔅 B_s → μ⁺ μ⁻ : (3.2 ± 0.2) 10⁻⁹𝔅 B⁰ → μ⁺ μ⁻: (0.1 ± 0.01) 10⁻⁹A. Buras (hep-ph/1012.1447), E. Gamiz et al. PRD 80, 014503 Ø Verzeigungsverhältnis kann durch neue Physik stark erhöht werden, z.B. Higgs / SuSy

n

ì

virtual particles entering in the loop cles affecting $B_{d,s} \rightarrow \mu \mu$)

ergy scales and see NP effects earlier:

Mer Stand der Dinge...

- CKM Mechanismus etabliert zur CP
 Verletzung im Standard-Modell
 Überragende Bestätigung durch B-Fabriken, Tevatron, LHC
- Ø Vor Sommer 2011:
 - Viele Hinweise auf mögliche Neue Physik
 - 𝔅 B_s→J/ψφ, B_s→µµ, B→K^{*}µµ, ...
- Second Experimentation Strength Stre
 - Viele Messungen dominieren Weltmittelwert
 - Viele sehr präzise Messergebnisse
 - 🛏 aber keine "Neue Physik"
 - Oder ? A_{CP} in Charm

- Flavour-Physik bleibt wichtigstes Mittel zur Suche nach Neuer Physik
 Ausschlussgrenzen auf z.B. CMSSM stärker als Ergebnisse direkter Suchen
- Entdeckung Neuer Physik bleibt spannend viele neue Resultate bei den Winterkonferenzen (LaThuile, Moriond,...)

Analysen fuer NP

Siehe arXiv:1012.1447

	AC	RVV2	AKM	δLL	FBMSSM	$SSU(5)_{\rm RN}$
$D^0 - \overline{D}^0$	***	*	*	*	*	*
ϵ_K	*	***	***	*	*	***
$S_{\psi\phi}$	***	***	***	*	*	***
$S_{\phi K_S}$	***	**	*	***	***	**
$A_{\rm CP}\left(B\to X_s\gamma\right)$	*	*	*	***	***	*
$A_{7,8}(K^*\mu^+\mu^-)$	*	*	*	***	***	*
$B_s \to \mu^+ \mu^-$	***	***	***	***	***	***
$K^+ \to \pi^+ \nu \bar{\nu}$	*	*	*	*	*	*
$K_L \to \pi^0 \nu \bar{\nu}$	*	*	*	*	*	*
$\mu \to e \gamma$	***	***	***	***	***	***
$\tau \to \mu \gamma$	***	***	*	***	***	***
$\mu + N \to e + N$	***	***	***	***	***	***
d_n	***	***	***	**	***	***
d_e	***	***	**	*	***	***
$(g-2)_{\mu}$	***	***	**	***	***	***

Kick CP Verletzung in Bs Mischung

𝔅 Winkelanalyse in B_s → J/ψ φ

$High Effective B_s$ Lebensdauer

Systematische Fehler

Source of uncertainty	Uncertainty on $ au_{KK}$ (fs)	Uncertainty on $\tau_{KK}^{-1} - \tau_{K\pi}^{-1} $ (ns ⁻¹)	
Fit method	3.2		
Acceptance correction	6.3	0.5	
Mass model	1.9		
$B \rightarrow h^+ h'^-$ background	1.9	1.4	
Partially reconstructed background	1.9	1.1	
Combinatorial background	1.5	1.6	
Primary vertex association	1.2	0.5	
Detector length scale	1.5	0.7	
Production asymmetry	1.4	0.6	
Minimum accepted lifetime	1.1	N/A	
Total (added in guadrature)	8.4	2.7	
Effective lifetime interpretation	2.8	1.1	

$B_{(s)} \rightarrow \mu^+ \mu^-$

Bereits starke Ausschlusskriterien Aber noch viel Raum fuer Neue Physik Analyse der 2011 Daten immens wichtig.

CMS Ereignis

LHCD

$B \rightarrow K^* \mu \mu$

52

LHCb Upgrade

Type	Observable	Current	LHCb	Upgrade	Theory
		precision	(5 fb^{-1})	(50 fb^{-1})	uncertainty
Gluonic	$S(B_s \to \phi \phi)$	-	0.08	0.02	0.02
penguin	$S(B_s \to K^{*0} \bar{K^{*0}})$	-	0.07	0.02	< 0.02
	$S(B^0 o \phi K^0_S)$	0.17	0.15	0.03	0.02
B_s mixing	$2\beta_s \ (B_s \to J/\psi\phi)$	0.35	0.019	0.006	~ 0.003
Right-handed	$S(B_s \to \phi \gamma)$	-	0.07	0.02	< 0.01
currents	$\mathcal{A}^{\Delta\Gamma_s}(B_s o \phi \gamma)$	-	0.14	0.03	0.02
E/W	$A_T^{(2)}(B^0 \to K^{*0} \mu^+ \mu^-)$	-	0.14	0.04	0.05
penguin	$s_0 A_{\rm FB} (B^0 \to K^{*0} \mu^+ \mu^-)$	-	4%	1%	7%
Higgs	$\mathcal{B}(B_s \to \mu^+ \mu^-)$	-	30%	8%	< 10%
penguin	$\frac{\mathcal{B}(B^0 \to \mu^+ \mu^-)}{\mathcal{B}(B_s \to \mu^+ \mu^-)}$	-	-	$\sim 35\%$	$\sim 5\%$
Unitarity	$\gamma \ (B \to D^{(*)} K^{(*)})$	$\sim 20^{\circ}$	$\sim 4^{\circ}$	0.9°	negligible
triangle	$\gamma \ (B_s \to D_s K)$	-	$\sim 7^{\circ}$	1.5°	negligible
angles	$eta (B^0 o J/\psi K^0)$	1°	0.5°	0.2°	negligible
Charm	A_{Γ}	2.5×10^{-3}	2×10^{-4}	4×10^{-5}	-
CPV	$A_{CP}^{dir}(KK) - A_{CP}^{dir}(\pi\pi)$	4.3×10^{-3}	4×10^{-4}	8×10^{-5}	-

LHCb Upgrade Lol: CERN-LHCC-2011-001

Search for X(4140) in $B^+ \rightarrow J/\psi \phi K^+$

LHCb-CONF-2011-045

18

Number of entries/4 MeV LHCb Preliminary CDF claimed a narrow state in $B^+ \rightarrow J/\psi \phi K^+$ J/ψφ spectrum at 4140 a) • PRL 102 (2009) 242002 and arXiv:1101.6058 Not seen in LHCb data • (dotted lines, expectation based on CDF central value) Number of entries/4 MeV LHCb Preliminary $B^+ \rightarrow J/\psi \phi K^+$ 1200 1300 1400 1100 $M(J/\psi\phi)-M(J/\psi)$ [MeV] $\mathcal{B}(B^+ \to X(4140)K^+) \times \mathcal{B}(X(4140) \to J\!/\psi\,\phi) < 0.07 \quad \text{at } 90\% \text{ CL}.$ $\mathcal{B}(B^+ \rightarrow J/\psi \phi K^+)$ Tim Gershon

The all-important trigger

Challenge is

- to efficiently select most interesting B decays
- while maintaining manageable data rates

Main backgrounds

- "minimum bias" inelastic pp scattering
- other charm and beauty decays

Handles

- high p_T signals (muons)
- displaced vertices

Exclusive selections

Write to tape

 $L0 - high p_{\tau}$ signals in calorimeters & muon chambers

HLT1 – associate L0 signals with tracks & displaced vertices

HLT2 – inclusive signatures + exclusive selections using full detector information

LHCb-PUB-2011-002 LHCb-PUB-2011-003 LHCb-PUB-2011-016

11

2 kHz

$\frac{1100}{1000}$ Effektive B_s Lebensdauer

 Komplementärer Zugang zur Suche nach Neuer Physik in B_s Mischung
 Zerfall möglich über Tree- oder Penguin Zerfälle

0.

Zerf

$$\langle \Gamma(B_s(t) \to f) \rangle \equiv \Gamma(B_s^0(t) \to f) + \Gamma(\bar{B}_s^0(t) \to f)$$

$$= R_{\rm H}^f e^{-\Gamma_{\rm H}^{(s)}t} + R_{\rm L}^f e^{-\Gamma_{\rm L}^{(s)}t} \propto e^{-\Gamma_s t} \left[\cosh\left(\frac{\Delta\Gamma_s t}{2} \right) + \left(\frac{A_{\Delta\Gamma}}{2} \sinh\left(\frac{\Delta\Gamma_s t}{2} \right) \right]$$

$$\begin{bmatrix} 2\Gamma_s \equiv \Gamma_{\rm L}^{(s)} + \Gamma_{\rm H}^{(s)}, & \Delta\Gamma_s \equiv \Gamma_{\rm L}^{(s)} - \Gamma_{\rm H}^{(s)} \end{bmatrix}$$