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A Forward Spectrometer
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› Optimized for beauty and charm physics at large pseudorapidity (2<h<5)
» Trigger: >95% (60-70%) efficient for muons (electrons)
» Tracking: sp/p 0.4%–0.6% (p from 5 to 100 GeV), sIP < 20 µm
» Calorimeter: sE/E ~ 10% / √E ⊕ 1%
» PID: ~97% µ,e ID for 1–3% p→µ,e misID



› Analysis presented today based on the full Run 1 dataset

› Due to luminosity levelling, same running conditions throughout fills

Datasets

CERN SeminarSimone Bifani 3

]2Dimuon mass [GeV/c
0.2 1 2 3 4 5 10 20 100 200

2
D

im
uo

ns
 p

er
 G

eV
/c

1
10

210

310

410

510

610

710

810

910

1010

1110

Single muon
Charmonium
Bottomonium
Other triggers

LHCb Preliminary
2011+12 data

ω/ρ φ

ψJ/

(2S)ψ

(nS)Υ 

Z

]2Dimuon mass [GeV/c
9 9.5 10 10.5 11

2
D

im
uo

ns
 p

er
 G

eV
/c

10

20

30

40
610×

(1S)Υ 

(2S)Υ
(3S)Υ

LHCB-CONF-2016-005



› b→sll decays proceed via FCNC transitions that only occur at loop order
(or beyond) in the SM

› New particles can for example contribute to loop or tree level diagrams
by enhancing/suppressing decay rates, introducing new sources of CP
violation or modifying the angular distribution of the final-state particles

› Rare b decays place strong constraints on many NP models by probing
energy scales higher than direct searches

Why Rare b Decays?
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› Differential branching fractions of B0→K(*)0µµ, B+→K(*)+µµ, Bs→fµµ,
B+→p+µµ and Lb→Lµµ
» Presence of hadronic uncertainties in theory predictions

› Angular analyses of B→K(*)µµ, Bs→fµµ, B0→K*0ee and Lb→Lµµ
» Define observables with smaller theory uncertainties

› Test of Lepton Flavour Universality in B+→K+ll and B0→K*0ll
» Cancellation of hadronic uncertainties in theory predictions

Shopping List
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Different q2 regions probe 
different processes

In the OPE framework the  
short-distance contribution is 

described by Wilson coefficients 



› Results consistently lower than SM predictions

Differential Branching Fractions
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› First full angular analysis of B0→K*0µµ: measured all CP-averaged
angular terms and CP-asymmetries
› Can construct less form-factor dependent ratios of observables

Angular Analyses
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Once upon a time …
› LHCb tested Lepton Universality using B+→K+ll decays and observed a

tension with the SM at 2.6ss

› Consistent with observed BR(B+→K+µµ) if NP does not couple to electrons
› Observation of LFU violations would be a clear sign of NP
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› Several attempts to interpret results by performing global fits to
data

› Take into account ~90 observables from different experiments,
including B→µµ and b→sll transitions
› All global fits require an additional contribution with respect to the SM

to accommodate the data, with a preference for NP in C9 at ~4ss
› Or is this a problem with the understanding of QCD?

(e.g. correctly estimating the contribution from charm loops?)

Global Fits
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› Test of LFU with B0→K*0µµµµ and B0→K*0ee, RK*º

› Two regions of q2

»Low [0.045-1.1] GeV2/c4

»Central [1.1-6.0] GeV2/c4

›Measured relative to B0→K*0J/yy(ll) in order to reduce systematics
› K*0 reconstructed as K+pp- within 100MeV from the K*(892)0

› Blind analysis to avoid experimental biases
› Extremely challenging due to significant differences in the way µ and e

“interact” with the detector
»Bremsstrahlung
»Trigger

Today …
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Bremsstrahlung − I
› Electrons emit a large amount of bremsstrahlung that results in

degraded momentum and mass resolutions

› Two types of bremsstrahlung

CERN SeminarSimone Bifani 11

Upstream
brem

Downstream
brem

» Downstream of the magnet
- photon energy in the same

calorimeter cell as the electron
- momentum correctly measured

» Upstream of the magnet
- photon energy in different

calorimeter cells than electron
- momentum evaluated after

bremsstrahlung
Air



Bremsstrahlung − II
› A recovery procedure is in place to improve the momentum reconstruction
› Events are categorised depending on the number of recovered photon clusters
› Incomplete recovery due to
» Energy threshold of the bremsstrahlung photon (ET > 75 MeV)
» Calorimeter acceptance
» Presence of energy deposits mistaken as bremsstrahlung photons

› Incomplete recovery causes the reconstructed B mass to shift towards lower
values and events to migrate in and out of the q2 bins
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Trigger
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» L0 Electron: electron hardware trigger fired
by clusters associated to at least one of the
two electrons (ET > 2.5 GeV)

» L0 Hadron: hadron hardware trigger fired
by clusters associated to at least one of the
K*0 decay products (ET > 3.5 GeV)

» L0 TIS: any hardware trigger fired by
particles in the event not associated to the
signal candidate

› Trigger system split in hardware (L0) and software (HLT) stages
› Due to higher occupancy of the calorimeters compared to the muon

stations, hardware thresholds on the electron ET are higher than on the
muon pT (L0 Muon, pT>1.5,1.8 GeV)

› To partially mitigate this effect, 3 exclusive trigger categories are
defined

CERN Seminar



Strategy
› RK*º determined as double ratio to reduce systematic effects

› Selection as similar as possible between µµµµ and ee
» Pre-selection requirements on trigger and quality of the candidates
» Cuts to remove the peaking backgrounds
» Particle identification to further reduce the background
»Multivariate classifier to reject the combinatorial background
» Kinematic requirements to reduce the partially-reconstructed backgrounds
»Multiple candidates randomly rejected (1-2%)

› Efficiencies
» Determined using simulation, but tuned using data
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Corrections to Simulation
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› Four-step procedure largely based on tag-and-probe technique

1. Particle identification
» PID response of each particle species tuned using dedicated calibration

samples

2. Generator
» Event multiplicity and B0 kinematics matched to data using B0→K*0J/y(µµ)

decay

3. Trigger
» Hardware and software trigger responses tuned using B0→K*0J/y(ll) decays

4. Data/MC differences
» Residual discrepancies in variables entering the MVA reduced using

B0→K*0J/y(ll) decays

› After tuning, very good data/MC agreement in all key observables
CERN Seminar



Fit Procedure – µµµµ
› Fit signal MC to extract initial parameters
› Simultaneous fit to resonant and non-resonant data allowing (some)

parameters to vary

› Signal
» Hypatia [NIM A, 764, 150 (2014)]
» Free parameters mass shift and width scale

› Backgrounds
» Combinatorial exponential
» LLb→pK-J/yy(µµµµ) simulation & data
» Bs→K*0J/yy(µµµµ) same as signal but shifted by mBs-mB0
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B0→K*0J/y
only



Fit Results – µµµµ
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Fit Procedure – ee
› Fit signal MC to extract initial parameters
› Simultaneous fit to resonant and non-resonant data split in trigger

categories allowing (some) parameters to vary (bremsstrahlung
fractions fixed from MC)

› Signal
» Crystal-Ball (Crystal-Ball and Gaussian)
» Free parameters mass shift and width scale

› Backgrounds
» Combinatorial exponential
» LLb→pK-J/yy(ee) simulation & data, constrained using muons
» Bs→K*0J/yy(ee) same as signal but shifted by mBs-mB0,

constrained using muons
» B0→K*0J/yy Leakage simulation, yield constrained using data
» Part-Reco simulation & data
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B0→K*0ee
only

B0→K*0J/y
only



Part-Reco Background − I
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› Partially-reconstructed backgrounds arise from decays involving higher
K resonances with one or more decay products in addition to a Kp pair
that are not reconstructed
› Large variety of decays, most abundant due to B→K1(1270)ee and

B→K2
*(1430)ee

CERN Seminar



Part-Reco Background − II
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›Modelled using two independent methods
»Create a K1+K2 cocktail from simulation and use B→XJ/y(ee) data to

determine their relative fraction
»Re-weight B+→K+p+p-ee simulated events using background

subtracted B+→K+p+p-µµ data
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Fit Results – ee
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Yields
› Precision of the measurement driven by the statistics of the electron

samples

› In total, about 90 and 110 B0→K*0ee candidates at low- and central-q2,
respectively
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Cross-Checks − I
› Control of the absolute scale of the efficiencies via the ratio

which is expected to be unity and measured to be

› Result observed to be reasonably flat as a function of the decay
kinematics and event multiplicity

› Extremely stringent test, which does not benefit from the cancellation
of the experimental systematics provided by the double ratio
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Cross-Checks − II
› BR(B0→K*0µµµµ) in good agreement with [arXiv:1606.04731]

› If corrections to simulations are not accounted for, the ratio of the
efficiencies changes by less than 5%

› Further checks performed by measuring the following ratios

which are found to be compatible with the expectations
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Cross-Checks − III
› Relative population of bremsstrahlung categories compared between

data and simulation using B0→K*0J/y(ee) and B0→K*0g(ee) events

› A good agreement is observed
CERN SeminarSimone Bifani 25
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Cross-Checks − IV
› The sPlot technique is used to statistically subtract the background from

the selected data [NIM A555, 356-369 (2005)]

› A good agreement is observed in both q2 regions between muons and
electrons, data and simulation
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Cross-Checks − V
› No attempt is made to separate the K∗0 meson from S-wave or other

broad contributions present in the mass peak region

› A clear K∗0 mass peak is visible, and the muon and electron channels
manifest a very good agreement
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Cross-Checks − VI
› The opening angle between the two leptons

› The distribution is different between muons and electrons at low-q2

because of the difference in the lepton masses
› Even very close to threshold a good description is observed (insert,

0.045<q2<0.1 GeV2/c4)
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Systematics − I
› RK*º determined as a double ratio
»Many experimental systematic effects cancel
» Statistically dominated (~15%)

› Total systematic uncertainty of 4-6% and 6-8% in the low- and central-q2
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Systematics − II
› Corrections to simulation: besides the uncertainty due to the size of the samples, an

additional systematic is determined using different parameterisations of the corrections

› Kinematic selection: a systematic uncertainty for Data/MC differences in the description
of the bremsstrahlung tail and the MVA classifier is determined by comparing simulation
and background subtracted B0→K*0J/y(ll) data

› Residual background: both data and simulation are used to assess a systematic
uncertainty for residual background contamination due to B0→K*0J/y(ee) events with a
K⟷e or p⟷e swap
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Systematics − III
› Mass fit: a systematic uncertainty is determined by running pseudo-experiments with

different descriptions of the signal and background fit models

› Bin migration: the effect of the model dependence and description of the q2 resolution
in simulation are assigned as a systematic uncertainty

› rJ/yy flatness: the ratio is studied as a function of several properties of the event and
decay products, and the observed residual deviations from unity are used to assign a
systematic uncertainty
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› The measured values of RK*º are found to be in good agreement among
the three trigger categories in both q2 regions
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Results − II

› The compatibility of the result in the low-q2 with respect to the SM
prediction(s) is of 2.2-2.4 standard deviations
› The compatibility of the result in the central-q2 with respect to the SM

prediction(s) is of 2.4-2.5 standard deviations
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›Using the full Run 1 data set the RK*º ratio has been measured by
LHCb with the best precision to date in two q2 bins

› The compatibility of the result with respect to the SM
prediction(s) is of 2.2-2.5 standard deviations in each q2 bin

› The result is particularly interesting given a similar behaviour in RK

›Rare decays will largely benefit from the increase of energy
(cross-section) and collected data (~5 fb-1 expected in LHCb) in
Run 2

› LHCb has a wide programme of LU tests based on similar ratios

› Future measurements will be able to clarify whether the
tantalising hints we are observing are a glimpse of NP

Summary and Outlook
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Backup



Calorimeter System
› Composed of a Scintillating Pad Detector (SPD), a Preshower (PS), an

electromagnetic calorimeter (ECAL) and a hadronic calorimeter (HCAL)
› The SPD and the PS consist of a plane of scintillator tiles (2.5 radiation

lengths, but to only ∼6% hadronic interaction lengths)
› The ECAL has shashlik-type construction, i.e. a stack of alternating slices

of lead absorber and scintillator (25 radiation lengths)
› The HCAL is a sampling device made from iron and scintillator tiles being

orientated parallel to the beam axis (5.6 interaction lengths)
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Cross-Checks − III
› Relative population of bremsstrahlung categories compared between

data and simulation using B0→K*0J/y(ee) and B0→K*0g(ee) events

› A good agreement is observed
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Cross-Checks − VII
› The distance between the Kp and ll vertices

› The hadron and lepton pairs consistently originate from the same decay
vertex
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Results − III
›What about NP?
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›

Di-Lepton Mass
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›

Theoretical Framework

CERN SeminarSimone Bifani 42



›

Operators
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›

Angular Analyses
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›

Interpretation of Global Fits
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›

Interpretation of Global Fits
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