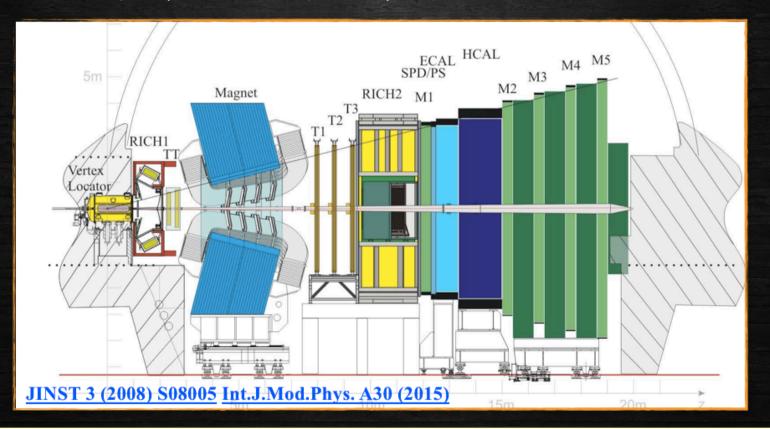
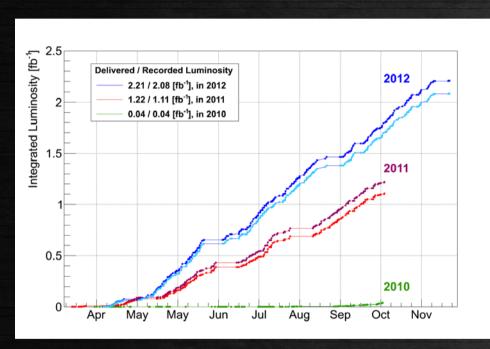


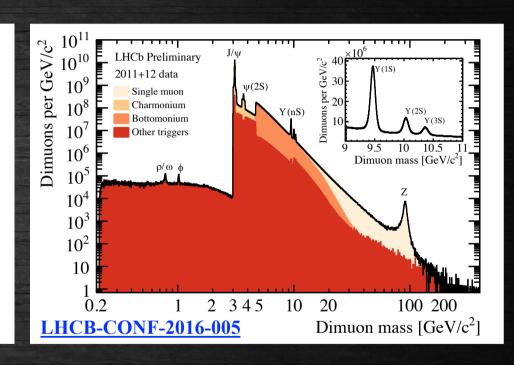
Search for New Physics with b→sll decays @ LHCb



A Forward Spectrometer

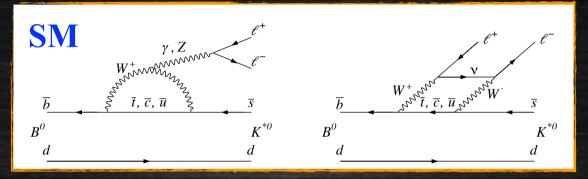
- > Optimized for beauty and charm physics at large pseudorapidity ($2<\eta<5$)
 - » Trigger: >95% (60-70%) efficient for muons (electrons)
 - » Tracking: σ_p/p 0.4%–0.6% (p from 5 to 100 GeV), σ_{IP} < 20 μm
 - » Calorimeter: σ_F /E ~ 10% / √E ⊕ 1%
 - » PID: ~97% μ,e ID for 1–3% $\pi \rightarrow \mu$,e misID

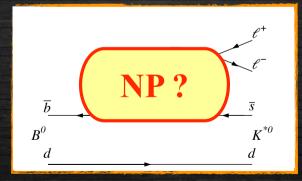




Datasets

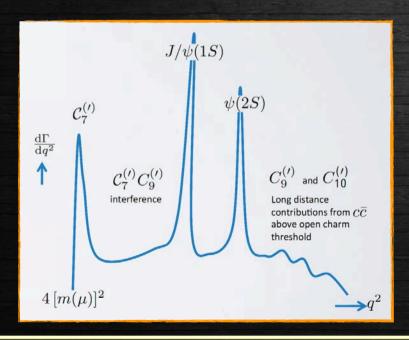
> Analysis presented today based on the full Run 1 dataset


> Due to luminosity levelling, same running conditions throughout fills


Why Rare b Decays?

> b→sll decays proceed via FCNC transitions that only occur at loop order (or beyond) in the SM

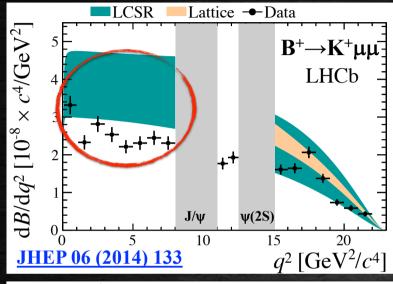
> New particles can for example contribute to loop or tree level diagrams by enhancing/suppressing decay rates, introducing new sources of CP violation or modifying the angular distribution of the final-state particles

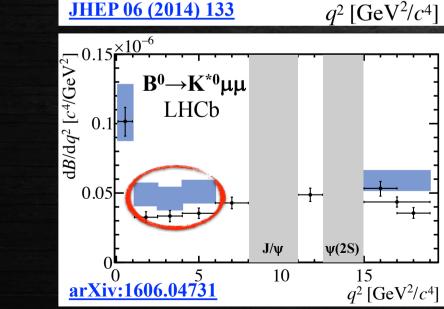

 Rare b decays place strong constraints on many NP models by probing energy scales higher than direct searches

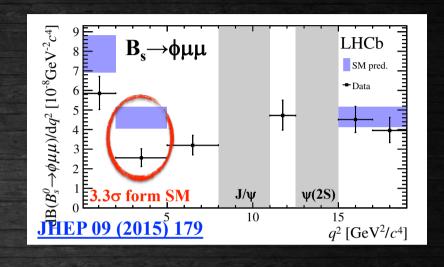
Shopping List

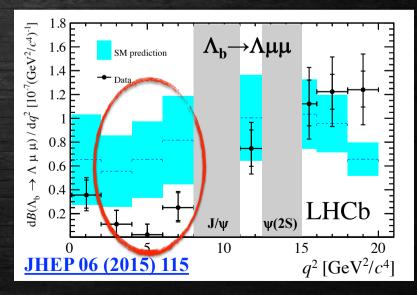
- > Differential branching fractions of $B^o \rightarrow K^{(*)o} \mu \mu$, $B^+ \rightarrow K^{(*)+} \mu \mu$, $B_s \rightarrow \phi \mu \mu$ $B^+ \rightarrow \pi^+ \mu \mu$ and $\Lambda_b \rightarrow \Lambda \mu \mu$
 - » Presence of hadronic uncertainties in theory predictions
- > **Angular analyses** of $B \rightarrow K^{(*)} \mu \mu$, $B_s \rightarrow \phi \mu \mu$, $B^o \rightarrow K^{*o}$ ee and $\Lambda_b \rightarrow \Lambda \mu \mu$
 - » Define observables with smaller theory uncertainties
- > Test of Lepton Flavour Universality in B⁺→K⁺II and B⁰→K^{*}II
 - » Cancellation of hadronic uncertainties in theory predictions

Different q² regions probe different processes In the OPE framework the short-distance contribution is described by Wilson coefficients

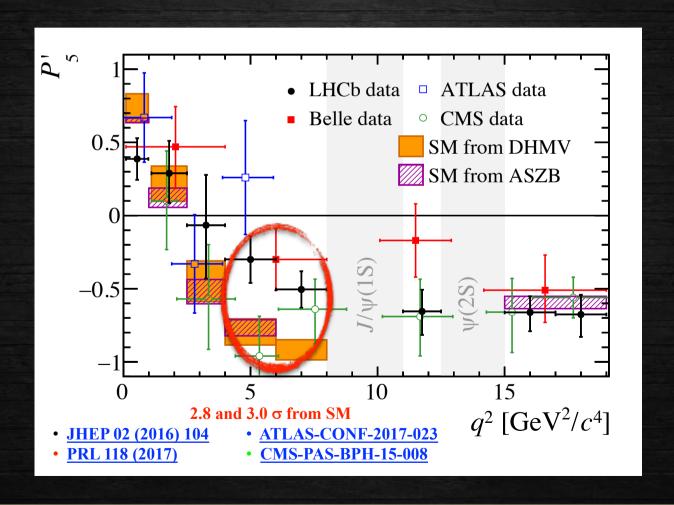

$$\mathcal{H}_{eff} = \frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{\alpha_e}{4\pi} \sum \left[C_i \mathcal{O}_i + C_i' \mathcal{O}_i' \right]$$




Differential Branching Fractions Luck

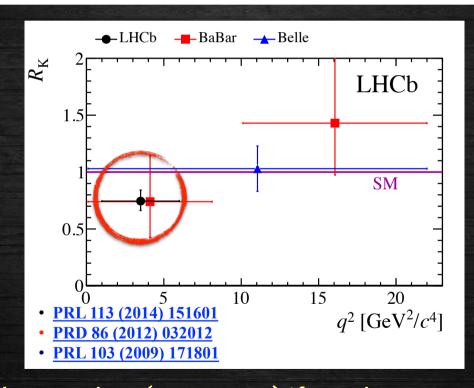


> Results consistently lower than SM predictions



Angular Analyses

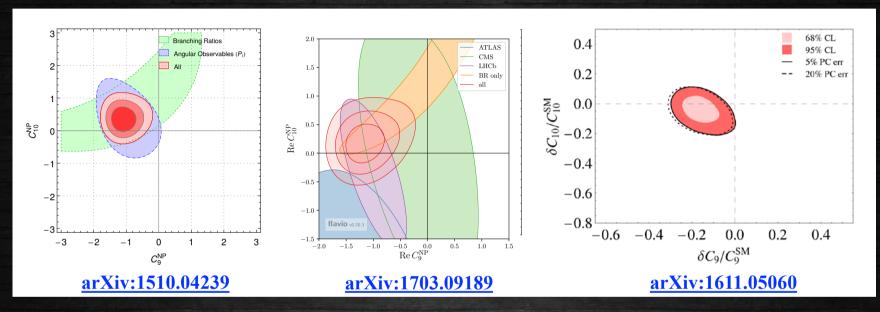
- > First **full angular analysis** of $B^o \rightarrow K^{*o} \mu \mu$: measured all CP-averaged angular terms and CP-asymmetries
- > Can construct less form-factor dependent ratios of observables



Once upon a time

> LHCb tested Lepton Universality using $B^+ \rightarrow K^+ II$ decays and observed a tension with the SM at 2.6 σ

$$\mathcal{R}_K = \frac{\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)}{\mathcal{B}(B^+ \to K^+ J/\psi \, (\to \mu^+ \mu^-))} \bigg/ \frac{\mathcal{B}(B^+ \to K^+ e^+ e^-)}{\mathcal{B}(B^+ \to K^+ J/\psi \, (\to e^+ e^-))}$$

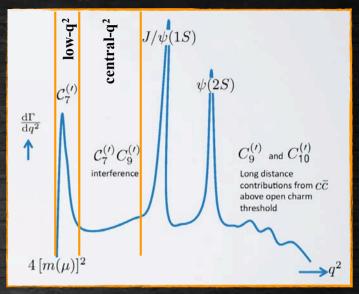

- > Consistent with observed BR(B $^+\rightarrow$ K $^+\mu\mu$) if NP does not couple to electrons
- > Observation of LFU violations would be a clear sign of NP

Global Fits

> Several attempts to interpret results by performing global fits to data

- > Take into account ~90 observables from different experiments, including B→µµ and b→sll transitions
- > All global fits require an additional contribution with respect to the SM to accommodate the data, with a preference for NP in C_9 at ~4 σ
- Or is this a problem with the understanding of QCD?
 (e.g. correctly estimating the contribution from charm loops?)

Today



> Test of LFU with $B^0 \rightarrow K^{*0} \mu \mu$ and $B^0 \rightarrow K^{*0} ee$, $R_{K^{*0}}$

> Two regions of q²

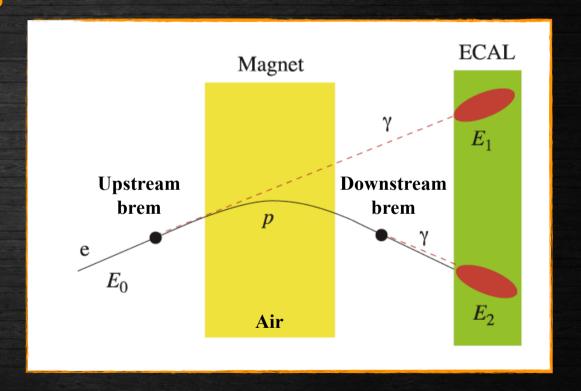
»Low [0.045-1.1] GeV²/c⁴

» Central [1.1-6.0] GeV²/c⁴

- > Measured relative to $B^0 \rightarrow K^{*0}J/\psi(II)$ in order to reduce systematics
- > K^{*o} reconstructed as $K^{+}\pi^{-}$ within 100MeV from the $K^{*}(892)^{o}$
- > Blind analysis to avoid experimental biases
- > Extremely challenging due to significant differences in the way μ and e "interact" with the detector
 - » Bremsstrahlung
 - »Trigger

Bremsstrahlung - I

> Electrons emit a large amount of bremsstrahlung that results in degraded momentum and mass resolutions

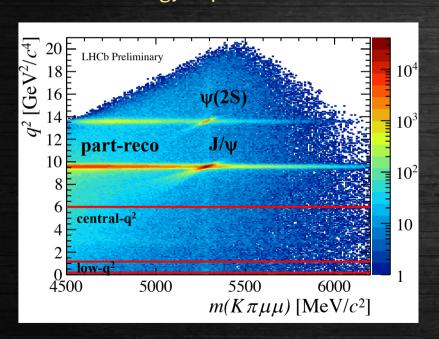

> Two types of bremsstrahlung

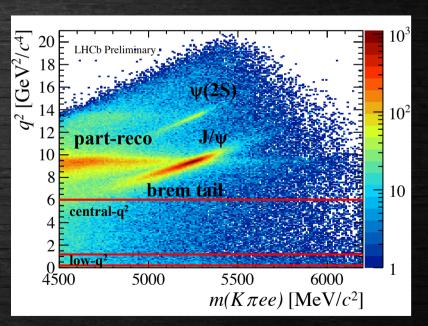
» Downstream of the magnet

- photon energy in the same calorimeter cell as the electron
- momentum correctly measured

» Upstream of the magnet

- photon energy in different calorimeter cells than electron
- momentum evaluated after bremsstrahlung



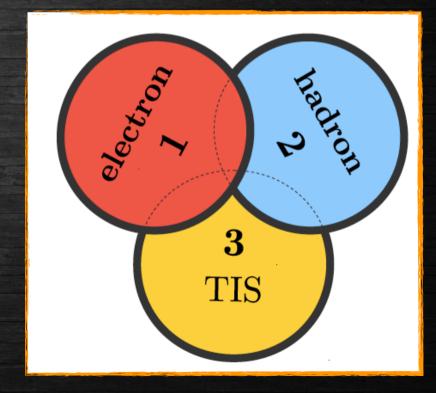


Bremsstrahlung – II

- > A recovery procedure is in place to improve the momentum reconstruction
- > Events are categorised depending on the number of recovered photon clusters
- > Incomplete recovery due to
 - » Energy threshold of the bremsstrahlung photon ($E_T > 75$ MeV)
 - » Calorimeter acceptance
 - » Presence of energy deposits mistaken as bremsstrahlung photons

> Incomplete recovery causes the reconstructed B mass to shift towards lower values and events to migrate in and out of the q² bins

Trigger



- > Trigger system split in hardware (Lo) and software (HLT) stages
- > Due to higher occupancy of the calorimeters compared to the muon stations, hardware thresholds on the electron E_T are higher than on the muon p_T (Lo Muon, p_T >1.5,1.8 GeV)

> To partially mitigate this effect, 3 exclusive trigger categories are

defined

- » **Lo Electron**: electron hardware trigger fired by clusters associated to at least one of the two electrons ($E_T > 2.5 \text{ GeV}$)
- » **Lo Hadron:** hadron hardware trigger fired by clusters associated to at least one of the K^{*o} decay products ($E_T > 3.5$ GeV)
- » Lo TIS: any hardware trigger fired by particles in the event not associated to the signal candidate

Strategy

> R_{K*°} determined as double ratio to reduce systematic effects

$$\mathcal{R}_{K^{*0}} = \frac{\mathcal{B}(B^0 \to K^{*0} \mu^+ \mu^-)}{\mathcal{B}(B^0 \to K^{*0} J/\psi \, (\to \mu^+ \mu^-))} \bigg/ \frac{\mathcal{B}(B^0 \to K^{*0} e^+ e^-)}{\mathcal{B}(B^0 \to K^{*0} J/\psi \, (\to e^+ e^-))}$$

> Selection as similar as possible between μμ and ee

- » Pre-selection requirements on trigger and quality of the candidates
- » Cuts to remove the peaking backgrounds
- » Particle identification to further reduce the background
- » Multivariate classifier to reject the combinatorial background
- » Kinematic requirements to reduce the partially-reconstructed backgrounds
- » Multiple candidates randomly rejected (1-2%)

> Efficiencies

» Determined using simulation, but tuned using data

Corrections to Simulation

> Four-step procedure largely based on tag-and-probe technique

1. Particle identification

» PID response of each particle species tuned using dedicated calibration samples

2. Generator

» Event multiplicity and B^o kinematics matched to data using B^o→K*^oJ/ψ(μμ) decay

3. Trigger

» Hardware and software trigger responses tuned using $B^0 \rightarrow K^{*0}J/\psi(II)$ decays

4. Data/MC differences

- » Residual discrepancies in variables entering the MVA reduced using $B^0 \rightarrow K^{*o}J/\psi(II)$ decays
- > After tuning, very good data/MC agreement in all key observables

Fit Procedure – μμ

- > Fit signal MC to extract initial parameters
- Simultaneous fit to resonant and non-resonant data allowing (some)
 parameters to vary

> Signal

» Hypatia

» Free parameters

[NIM A, 764, 150 (2014)]

mass shift and width scale

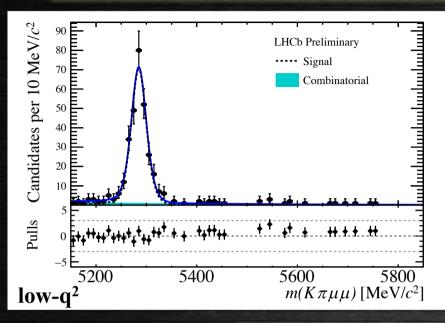
> Backgrounds

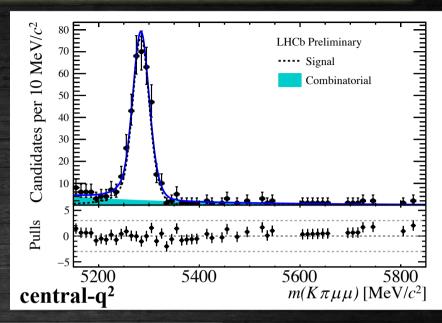
» Combinatorial

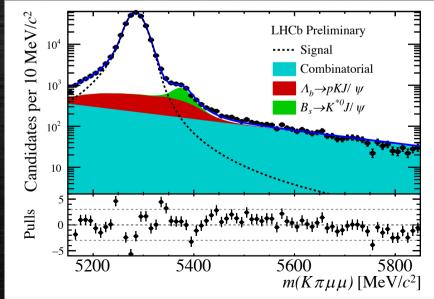
 $> \Lambda_b \rightarrow p K^- J/\psi(\mu\mu)$

» $B_s \rightarrow K^{*o} J/\psi(\mu\mu)$

exponential


simulation & data


same as signal but shifted by m_{Bs} - m_{Bo}



Fit Results – μμ

Fit Procedure – ee

- > Fit signal MC to extract initial parameters
- Simultaneous fit to resonant and non-resonant data split in trigger categories allowing (some) parameters to vary (bremsstrahlung fractions fixed from MC)

> Signal

- » Crystal-Ball (Crystal-Ball and Gaussian)
- » Free parameters mass shift and width scale

> Backgrounds

- » Combinatorial
- $> \Lambda_b \rightarrow pK^-J/\psi(ee)$
- $\gg B_s \rightarrow K^{*o}J/\psi(ee)$
- » B⁰→K^{*0}J/ ψ Leakage
- » Part-Reco

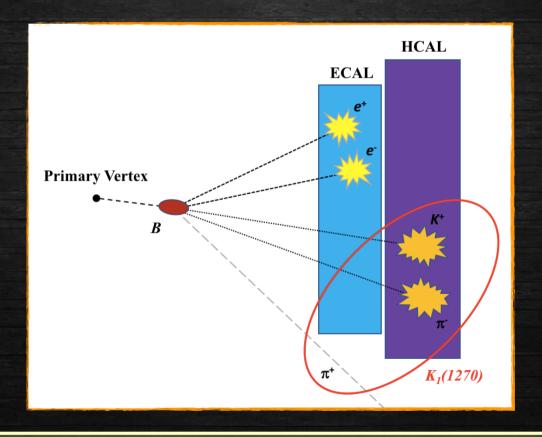
exponential

simulation & data, constrained using muons

same as signal but shifted by m_{Bs}-m_{Bo},

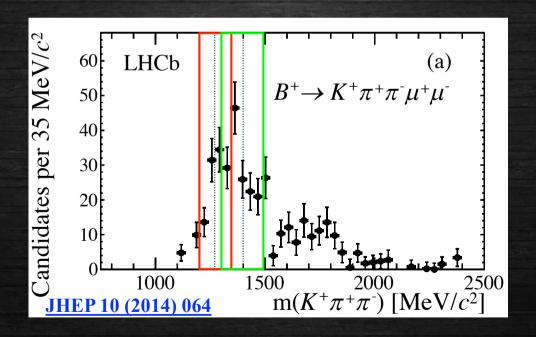
constrained using muons

simulation, yield constrained using data

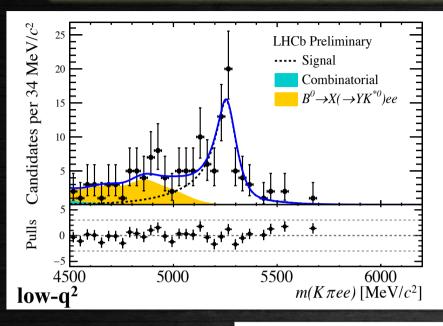

simulation & data

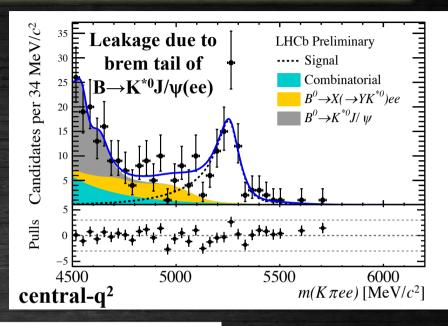
Part-Reco Background – I

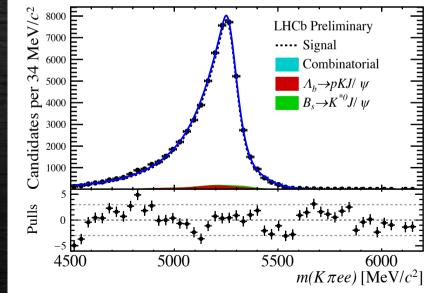
- > Partially-reconstructed backgrounds arise from decays involving **higher** K resonances with one or more decay products in addition to a $K\pi$ pair that are not reconstructed
- > Large variety of decays, most abundant due to $B \rightarrow K_1(1270)ee$ and $B \rightarrow K_2^*(1430)ee$



Part-Reco Background - II


- > Modelled using two independent methods
 - »Create a K_1+K_2 cocktail from simulation and use $B\to XJ/\psi(ee)$ data to determine their relative fraction
 - »Re-weight $B^+ \rightarrow K^+ \pi^+ \pi^-$ ee simulated events using background subtracted $B^+ \rightarrow K^+ \pi^+ \pi^- \mu \mu$ data





Fit Results – ee

Yields

> Precision of the measurement driven by the statistics of the electron samples

	$B^0 \! o$	$K^{*0}\ell^+\ell^-$	$B^0 \! o K^{*0} J \! / \! \psi (\! o \ell^+ \ell^-)$	
	$low-q^2$	central- q^2	$D \to K J/\psi (\to \ell^+ \ell^-)$	
$\mu^+\mu^-$	$285 {}^{+}_{-} {}^{18}_{18}$	$353 {}^{+}_{-} {}^{21}_{21}$	$274416 \ ^{+}_{-}\ ^{602}_{654}$	
e^+e^- (L0E)	55 + 9	$67 {}^{+}_{-} {}^{10}_{10}$	$43468 {}^{+}_{-} {}^{222}_{221}$	
e^+e^- (L0H)	$13 + \frac{5}{5}$	$19 {}^{+}_{-} {}^{6}_{5}$	$3388 \begin{array}{l} + & 62 \\ - & 61 \end{array}$	
$e^{+}e^{-}$ (L0I)	$21 \frac{+}{-} \frac{5}{4}$	$25\ ^{+}_{-}\ ^{7}_{6}$	$11505 {}^{+}_{-} {}^{115}_{114}$	

> In total, about 90 and 110 $B^0 \rightarrow K^{*0}ee$ candidates at low- and central- q^2 , respectively

Cross-Checks - I

> Control of the absolute scale of the efficiencies via the ratio

$$r_{J/\psi} = \frac{\mathcal{B}(B^0 \to K^{*0}J/\psi (\to \mu^+\mu^-))}{\mathcal{B}(B^0 \to K^{*0}J/\psi (\to e^+e^-))}$$

which is expected to be unity and measured to be

$$1.043 \pm 0.006 \, (\mathrm{stat}) \pm 0.045 \, (\mathrm{syst})$$

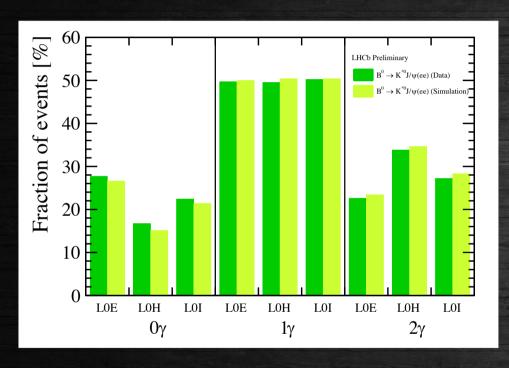
- > Result observed to be reasonably flat as a function of the decay kinematics and event multiplicity
- Extremely stringent test, which does not benefit from the cancellation of the experimental systematics provided by the double ratio

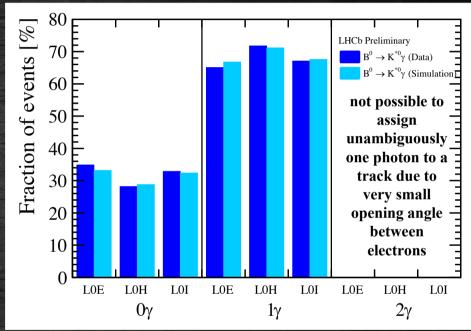
Cross-Checks - II

- > BR(B $^{\circ}\rightarrow K^{\circ}\mu\mu$) in good agreement with [arXiv:1606.04731]
- > If corrections to simulations are not accounted for, the ratio of the efficiencies changes by less than 5%
- > Further checks performed by measuring the following ratios

$$\mathcal{R}_{\psi(2S)} = \frac{\mathcal{B}(B^0 \to K^{*0} \psi(2S)(\to \mu^+ \mu^-))}{\mathcal{B}(B^0 \to K^{*0} J/\psi (\to \mu^+ \mu^-))} \bigg/ \frac{\mathcal{B}(B^0 \to K^{*0} \psi(2S)(\to e^+ e^-))}{\mathcal{B}(B^0 \to K^{*0} J/\psi (\to e^+ e^-))}$$

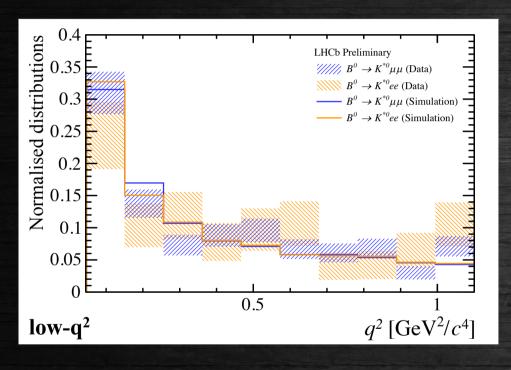
$$r_{\gamma} = \frac{\mathcal{B}(B^0 \to K^{*0} \gamma (\to e^+ e^-))}{\mathcal{B}(B^0 \to K^{*0} J/\psi (\to e^+ e^-))}$$

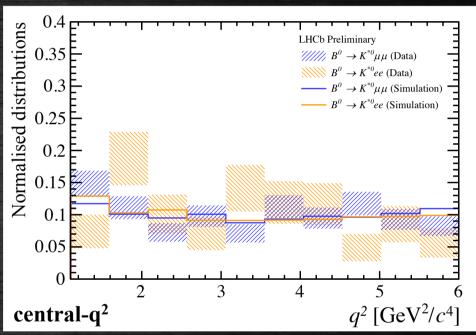

which are found to be compatible with the expectations



Cross-Checks - III

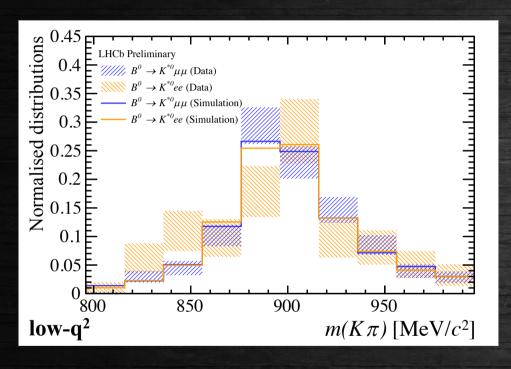
> Relative population of bremsstrahlung categories compared between data and simulation using $B^o \rightarrow K^{*o} J/\psi(ee)$ and $B^o \rightarrow K^{*o} \gamma(ee)$ events

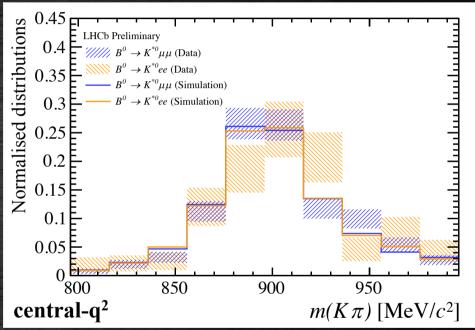

> A good agreement is observed



Cross-Checks – IV

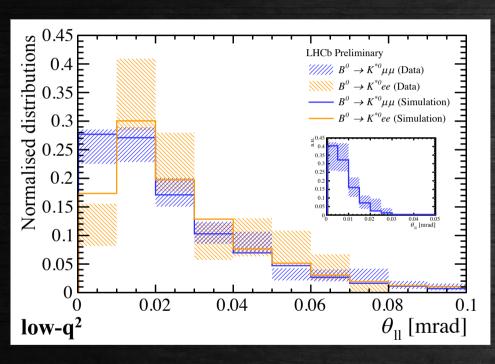
> The sPlot technique is used to statistically subtract the background from the selected data [NIM A555, 356-369 (2005)]

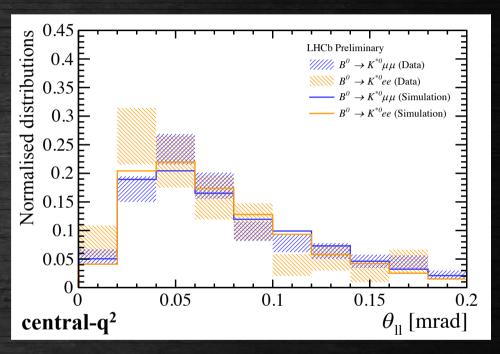

> A good agreement is observed in both q² regions between muons and electrons, data and simulation



Cross-Checks - V

> No attempt is made to separate the K*0 meson from S-wave or other broad contributions present in the mass peak region


A clear K*o mass peak is visible, and the muon and electron channels manifest a very good agreement



Cross-Checks – VI

> The opening angle between the two leptons

- > The distribution is different between muons and electrons at low-q² because of the difference in the lepton masses
- > Even very close to threshold a good description is observed (insert, $0.045 < q^2 < 0.1 \text{ GeV}^2/c^4$)

Systematics – I

- > R_{K*°} determined as a double ratio
 - » Many experimental systematic effects cancel
 - » Statistically dominated (~15%)

	$\mathrm{low} ext{-}q^2$			$\operatorname{central}$ - q^2		
Trigger category	L0E	L0H	L0I	L0E	L0H	LOI
Corrections to simulation	2.5	4.8	3.9	2.2	4.2	3.4
${f Trigger}$	0.1	1.2	0.1	0.2	0.8	0.2
PID	0.2	0.4	0.3	0.2	1.0	0.5
Kinematic selection	2.1	2.1	2.1	2.1	2.1	2.1
Residual background	_	_	_	5.0	5.0	5.0
Mass fits	1.4	2.1	2.5	2.0	0.9	1.0
Bin migration	1.0	1.0	1.0	1.6	1.6	1.6
$r_{J/\psi}$ flatness	1.6	1.4	1.7	0.7	2.1	0.7
Total	4.0	6.1	5.5	6.4	7.5	6.7

> Total systematic uncertainty of 4-6% and 6-8% in the low- and central-q²

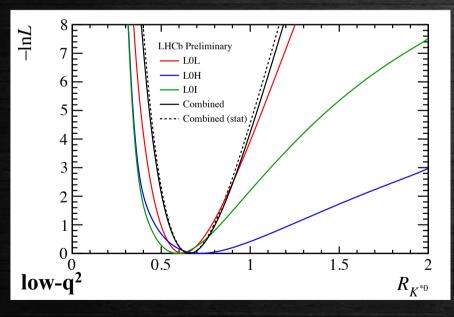
Systematics - II

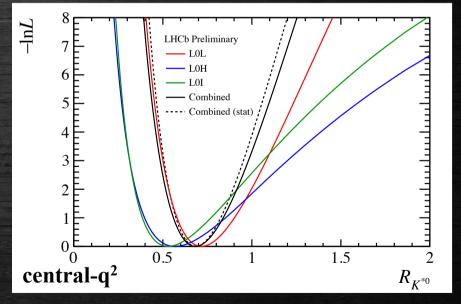
- > Corrections to simulation: besides the uncertainty due to the size of the samples, an additional systematic is determined using different parameterisations of the corrections
- > **Kinematic selection:** a systematic uncertainty for Data/MC differences in the description of the bremsstrahlung tail and the MVA classifier is determined by comparing simulation and background subtracted $B^0 \rightarrow K^{*0}J/\psi(II)$ data
- > Residual background: both data and simulation are used to assess a systematic uncertainty for residual background contamination due to $B^0 \rightarrow K^{*0}J/\psi(ee)$ events with a $K \leftrightarrow e$ or $\pi \leftrightarrow e$ swap

	$\mathrm{low} ext{-}q^2$			${ m central} ext{-}q^2$		
Trigger category	L0E	L0H	L0I	L0E	L0H	LOI
Corrections to simulation	2.5	4.8	3.9	2.2	4.2	3.4
$\mathbf{Trigger}$	0.1	1.2	0.1	0.2	0.8	0.2
PID	0.2	0.4	0.3	0.2	1.0	0.5
Kinematic selection	2.1	2.1	2.1	2.1	2.1	2.1
Residual background	_	_	_	5.0	5.0	5.0
Mass fits	1.4	2.1	2.5	2.0	0.9	1.0
Bin migration	1.0	1.0	1.0	1.6	1.6	1.6
$r_{J\!/\psi}$ flatness	1.6	1.4	1.7	0.7	2.1	0.7
Total	4.0	6.1	5.5	6.4	7.5	6.7

Systematics - III

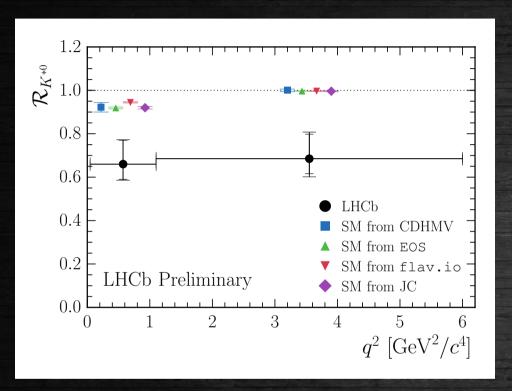
- > Mass fit: a systematic uncertainty is determined by running pseudo-experiments with different descriptions of the signal and background fit models
- > Bin migration: the effect of the model dependence and description of the q² resolution in simulation are assigned as a systematic uncertainty
- > $r_{J/\psi}$ flatness: the ratio is studied as a function of several properties of the event and decay products, and the observed residual deviations from unity are used to assign a systematic uncertainty

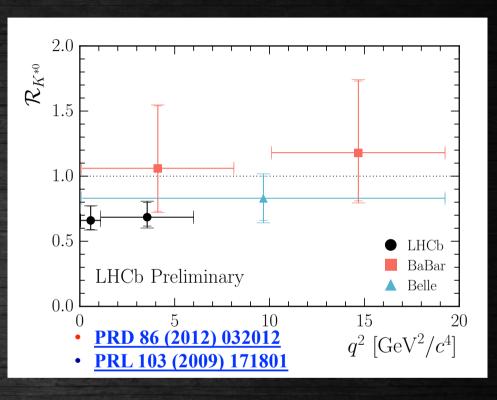

	$\mathrm{low} ext{-}q^2$			$\operatorname{central} olimits_q^2$		
Trigger category	L0E	L0H	L0I	L0E	L0H	LOI
Corrections to simulation	2.5	4.8	3.9	2.2	4.2	3.4
$\operatorname{Trigger}$	0.1	1.2	0.1	0.2	0.8	0.2
PID	0.2	0.4	0.3	0.2	1.0	0.5
Kinematic selection	2.1	2.1	2.1	2.1	2.1	2.1
Residual background	_	_	_	5.0	5.0	5.0
Mass fits	1.4	2.1	2.5	2.0	0.9	1.0
Bin migration	1.0	1.0	1.0	1.6	1.6	1.6
$r_{J\!/\psi}$ flatness	1.6	1.4	1.7	0.7	2.1	0.7
Total	4.0	6.1	5.5	6.4	7.5	6.7



Results - I

LHCb Preliminary	low - q^2	$\operatorname{central}$ - q^2		
$\mathcal{R}_{K^{*0}}$	$0.660~^{+~0.110}_{-~0.070}\pm0.024$	$0.685 {}^{+}_{-} {}^{0.113}_{0.069} \pm 0.047$		
$95\%~\mathrm{CL}$	[0.517 – 0.891]	[0.530 – 0.935]		
99.7% CL	[0.454 – 1.042]	[0.462 – 1.100]		

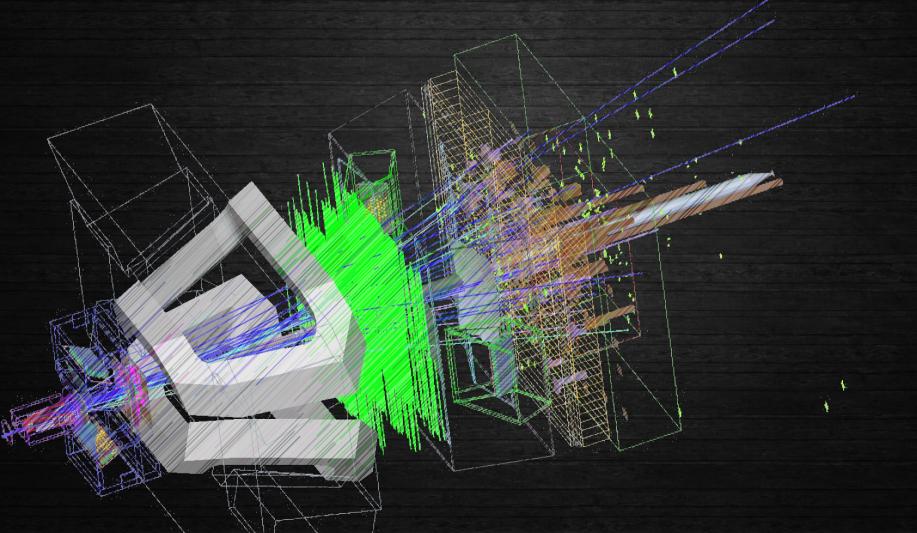



> The measured values of $R_{K^{*\circ}}$ are found to be in good agreement among the three trigger categories in both q^2 regions

Results - II

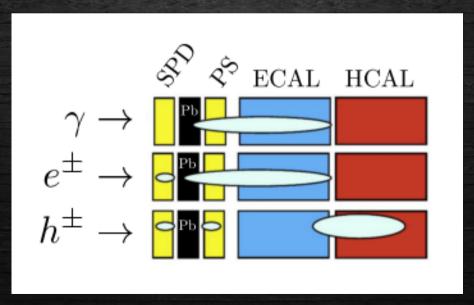
- > The compatibility of the result in the low-q² with respect to the SM prediction(s) is of 2.2-2.4 standard deviations
- > The compatibility of the result in the **central-q**² with respect to the SM prediction(s) is of **2.4-2.5** standard deviations

Summary and Outlook



- > Using the full Run 1 data set the $R_{K^{*\circ}}$ ratio has been measured by LHCb with the best precision to date in two q^2 bins
- > The compatibility of the result with respect to the SM prediction(s) is of 2.2-2.5 standard deviations in each q² bin
- > The result is particularly interesting given a similar behaviour in R_K
- > Rare decays will largely benefit from the increase of energy (cross-section) and collected data (~5 fb⁻¹ expected in LHCb) in Run 2
- > LHCb has a wide programme of LU tests based on similar ratios
- > Future measurements will be able to clarify whether the tantalising hints we are observing are a glimpse of NP

Backup



Calorimeter System

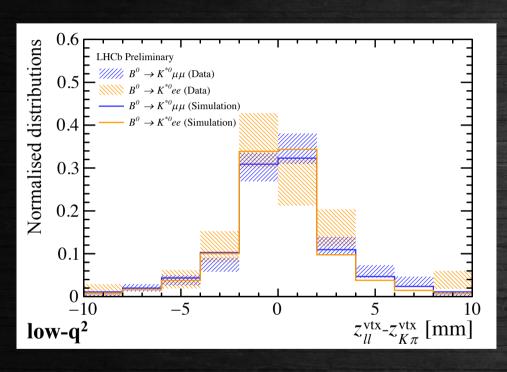
- > Composed of a Scintillating Pad Detector (SPD), a Preshower (PS), an electromagnetic calorimeter (ECAL) and a hadronic calorimeter (HCAL)
- > The SPD and the PS consist of a plane of scintillator tiles (2.5 radiation lengths, but to only $\sim\!6\%$ hadronic interaction lengths)
- > The ECAL has shashlik-type construction, i.e. a stack of alternating slices of lead absorber and scintillator (25 radiation lengths)
- > The HCAL is a sampling device made from iron and scintillator tiles being orientated parallel to the beam axis (5.6 interaction lengths)

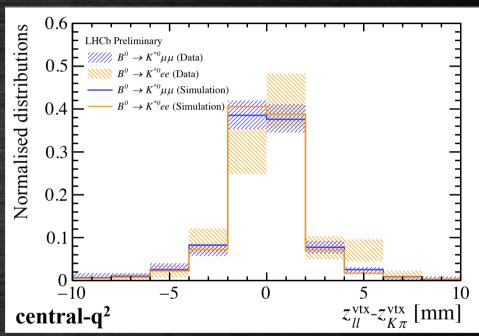
Cross-Checks - III

> Relative population of bremsstrahlung categories compared between data and simulation using $B^0 \rightarrow K^{*0}J/\psi(ee)$ and $B^0 \rightarrow K^{*0}\gamma(ee)$ events

Table 6: Fraction of simulated $B^0 \to K^{*0}J/\psi$ ($\to e^+e^-$) and $B^0 \to K^{*0}\gamma$ ($\to e^+e^-$) events (in percent) with 0, 1 and 2 recovered photons per trigger category. The number in brackets is determined on data. For $B^0 \to K^{*0}\gamma$ ($\to e^+e^-$), due to the very low opening angle of the two electrons, it is not possible to assign unambiguously one photon to a track.

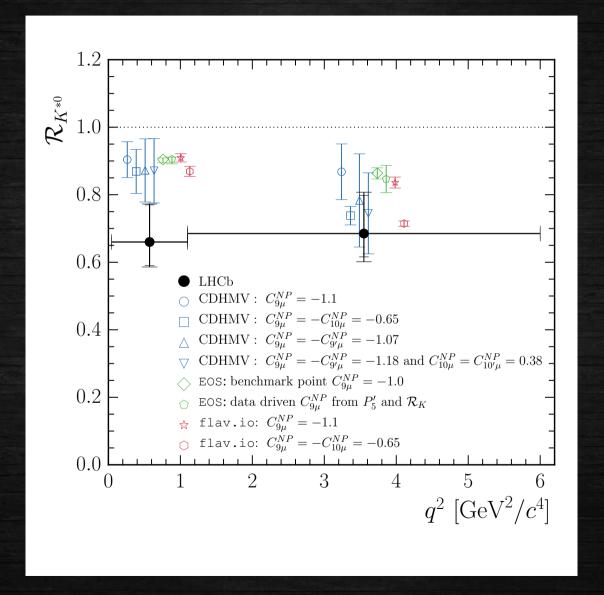
	Trigger category	0γ	1γ	2γ				
	L0E	$27.7 \pm 0.2 \ (26.6 \pm 0.2)$	$49.7 \pm 0.2 \ (50.0 \pm 0.2)$	$22.6 \pm 0.2 \; (23.4 \pm 0.2)$				
	L0H	$16.7 \pm 0.6 \ (15.1 \pm 0.6)$	$49.5 \pm 0.8 \ (50.4 \pm 0.8)$	$33.8 \pm 0.8 \; (34.6 \pm 0.7)$				
	LOI	$22.4 \pm 0.4 \ (21.4 \pm 0.4)$	$50.2 \pm 0.5 \ (50.4 \pm 0.5)$	$27.2 \pm 0.4 \; (28.3 \pm 0.4)$				
	$B^0\! o K^{*0} \gamma (o e^+e^-)$							
	L0E	$34.9 \pm 2.4 \ (33.2 \pm 2.8)$	$65.1 \pm 2.4 \ (66.8 \pm 2.8)$	_				
	L0H	$28.2 \pm 3.4 \ (28.8 \pm 4.1)$	$71.8 \pm 3.4 \ (71.2 \pm 4.1)$	_				
	LOI	$32.9 \pm 3.0 \ (32.4 \pm 3.2)$	$67.1 \pm 3.0 \ (67.6 \pm 3.2)$	_				
	L0H	$34.9 \pm 2.4 \ (33.2 \pm 2.8)$ $28.2 \pm 3.4 \ (28.8 \pm 4.1)$	$65.1 \pm 2.4 \ (66.8 \pm 2.8)$ $71.8 \pm 3.4 \ (71.2 \pm 4.1)$	- - -				


> A good agreement is observed

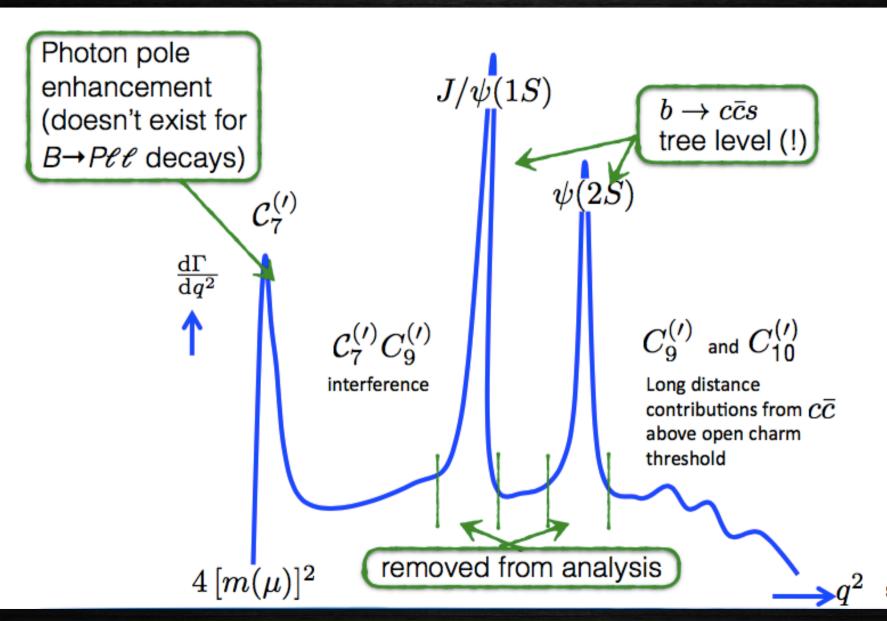


Cross-Checks – VII

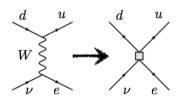
> The distance between the $K\pi$ and II vertices


> The hadron and lepton pairs consistently originate from the same decay vertex

Results - III


> What about NP?

Di-Lepton Mass


dimuon mass squared

Theoretical Framework

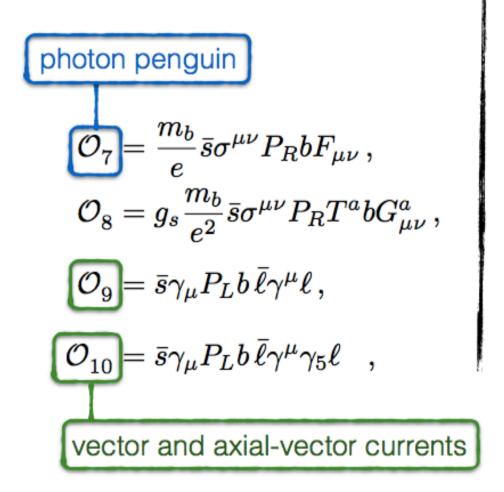
 In the Fermi model of the weak interaction, the full electroweak Lagrangian (which was unknown at the time) is replaced by the low-energy theory (QED) plus a single operator with an effective coupling constant.

$${\cal L}_{
m EW} o {\cal L}_{
m QED} + rac{G_{
m F}}{\sqrt{2}} (\overline{u}d) (ear{
u})$$

Can write a Hamiltonian for the effective theory as

$$\mathcal{H}_{\mathrm{eff}} = -\frac{4 G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{\alpha_e}{4\pi} \sum_i C_i(\mu) \mathcal{O}_i(\mu),$$

Wilson coefficient (integrating out scales above μ)


Local operator with different Lorentz structure (vector, axial vector current etc)

Operators

SM operators

Beyond SM operators

$$\mathcal{O}_7' = rac{m_b}{e} ar{s} \sigma^{\mu
u} P_L b F_{\mu
u} \,,$$
 $\mathcal{O}_8' = g_s rac{m_b}{e^2} ar{s} \sigma^{\mu
u} P_L T^a b G^a_{\mu
u} \,,$ $\mathcal{O}_9' = ar{s} \gamma_\mu P_R b \, ar{\ell} \gamma^\mu \ell \,,$ $\mathcal{O}_{10}' = ar{s} \gamma_\mu P_R b \, ar{\ell} \gamma^\mu \gamma_5 \ell \,.$

right handed currents (suppressed in SM)

Angular Analyses

Complex angular distribution:

$$\left.\frac{1}{\mathrm{d}(\Gamma+\bar{\Gamma})/\mathrm{d}q^2}\frac{\mathrm{d}^3(\Gamma+\bar{\Gamma})}{\mathrm{d}\vec{\Omega}}\right|_{\mathrm{P}} = \frac{9}{32\pi}\Big[\tfrac{3}{4}(1-F_{\mathrm{L}})\sin^2\theta_K + F_{\mathrm{L}}\cos^2\theta_K \right. + \left.F_{\mathrm{L}}\cos^2\theta_K + F_{\mathrm{L}}\cos^2\theta_K + F_{\mathrm{L}}\cos^2\theta$$

$$+\frac{1}{4}(1-F_{
m L})\sin^2 heta_K\cos2 heta_l$$

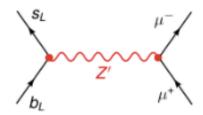
fraction of longitudinal polarisation of the K*
$$+\frac{1}{4}(1-F_{\rm L})\sin^2\theta_K\cos2\theta_l$$

forward-backward asymmetry of the dilepton system

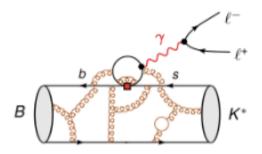
$$+S_4 \sin 2\theta_K \sin 2\theta_l \cos \phi + S_5 \sin 2\theta_K \sin \theta_l \cos \phi$$

$$+\frac{4}{3}A_{\mathrm{FB}}\sin^2\theta_K\cos\theta_l + S_7\sin2\theta_K\sin\theta_l\sin\phi$$

$$+S_8\sin 2 heta_K\sin 2 heta_l\sin \phi + S_9\sin^2 heta_K\sin^2 heta_l\sin 2\phi$$


The observables depend on form-factors for the $B \rightarrow K^*$ transition plus the underlying short distance physics (Wilson coefficients).

Interpretation of Global Fits

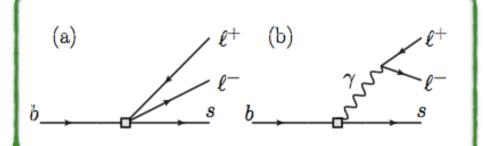


Optimist's view point

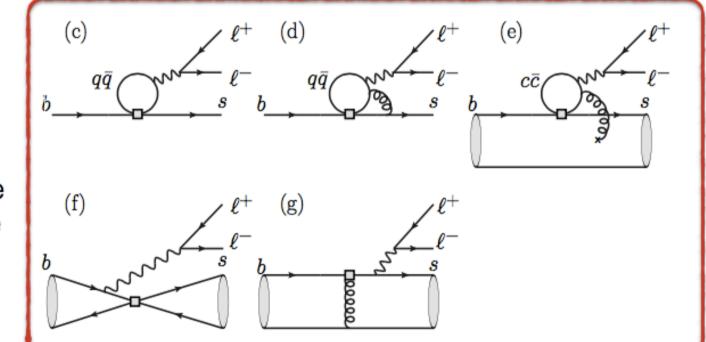
Vector-like contribution could come from new tree level contribution from a Z' with a mass of a few TeV

Pessimist's view point

Vector-like contribution could point to a problem with our understanding of QCD, e.g. are we correctly estimating the contribution for charm loops that produce dimuon pairs via a virtual photon.


More work needed from experiment/theory to disentangle the two

Interpretation of Global Fits



 This is the physics we are interested in.

Short distance part integrates out (as a Wilson coefficient)

 We also get long-distance hadronic contributions.
 Included in the SM but are the predictions correct?

