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Tetra- and Penta-quarks conceived at the 

birth of Quark Model 

• Searches for such states made out of the light quarks 

(u,d,s) are ~50 years old, but no undisputed experimental 

evidence have been found for them
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…

…



Two waves of past pentaquark claims (with s)
3

e.g. PDG 1976

Last mention of baryonic Z*’s PDG 1992

Last mention of 2nd pentaquark wave: PDG 2006

…

…

Found/debunked by looking for “bumps” in mass spectra
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• Several charmonium and bottomonium-like states have been 

observed by several different experiments.

• These states do not fit into the conventional quark model and 

are candidates for tetraquarks.

• Example: The Z(4430) is a 𝑐  𝑐𝑑 𝑢 candidate first seen by Belle 

in 2007 and confirmed in 2014 by LHCb.
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“XYZ” States

Breit-

Wigner

PRL 112, 222002 (2014)

• Despite the history of pentaquarks, the discovery of strong 

tetraquark candidates makes their existence appear more 

plausible!

PRL 112, 222002 (2014)
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• Forward arm spectrometer designed for precision CP violation 

measurements and decays of bottom and charm hadrons.

• Rapidity coverage 2.0 < 𝑦 < 4.5

• Excellent particle identification: 

– Muons: 𝜀~97% for 1 − 3% 𝜋 → 𝜇 misidentification

– Kaons: 𝜀~95% for 5% 𝜋 → 𝐾 misidentification

• Very good vertex resolution: 𝜎 = 20𝜇𝑚 impact parameter resolution

• Momentum resolution  Δ𝑝 𝑝 = 0.5% at 20GeV to 0.8% at 100 GeV
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The LHCb detector

Int. J. Mod. Phys. A 30 (2015) 1530022
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• The data sample 

consists of the full 

LHCb Run 1 data set 

of 3fb-1

• Candidates have a 

𝜇+𝜇− 𝐾𝑝 vertex, 

with the 𝜇+𝜇− pair 

consistent with a  𝐽 𝜓
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Lb
0J/y p K- Selection

VELO

• Standard selection to ensure good track and vertex quality, 

as well as cuts on particle identification, 𝑝𝑇 cuts, and 

separation from the primary vertex.

• Reflections from 𝐵0 and 𝐵𝑠 are vetoed.

• Final background suppression is done with a multivariate 

analyzer (boosted decision tree).



Lb
0J/y p K- At LHCb
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• The decay first observed by LHCb and used to measure Lb
0

lifetime PRL 111, 102003 (2013)

PRL 115, 07201

The background

is only 5.4% in 

the signal region!  

The sideband 

distributions are flat 

no major 

reflections from the 

other b-hadrons 

after the selection 

26,007±166

Lb
0 candidates

Run I

3 fb-1
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L(1520) and other L*’s p K-

Pc
+J/yp  

?

LHCb

Unexpected narrow peak in 

mJ/y p !

An unexpected structure in mJ/y p

PRL 115, 072001 (2015)



Necessary Checks
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• Many checks done to 

ensure it is not an “artifact” 

of selection:

– Efficiency across Dalitz

plane is smooth, 

wouldn’t create peaking 

structures.

PRL 115, 072001 (2015)

– The same Pc
+ structure found using very different selections 

by different LHCb teams

– Split data shows consistency: 2011/2012, magnet up/down, 

Lb/ Λ𝑏, Lb(pT low)/Lb(pT high)

– Exclude Xb or other high mass decays as a possible source

– Veto Bs→J/yK-K+ & B0→J/yK-p+ decays

– Suppress fake tracks: the peak is not an experimental 

artifact.



Amplitude Analysis of  Lb
0J/ypK-, J/ym+m-

• Could it be a reflection of interfering L*’s p K- ?

– Full amplitude analysis absolutely necessary! 

• Analyze all dimensions of the decay kinematics for              

Lb
0J/ypK-, J/ym+m- :

– to maximize sensitivity to the decay dynamics

– to avoid biases due to averaging over some dimensions in 

presence of non-uniform detector efficiency

• Our PDF used in the fit is:
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- Fitted parameters (helicity couplings,M0,G0)6D

Matrix element describing decay

Phase space factor

Selection efficiency

Normalization integral



Background modeling
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The remaining background 

can be handled in two ways. 

In the fit we minimize:

• Wi are sWeights (arXiv:0402083v3) based on the fit to mJ/ypK

distribution

• Negative weights correspond to background events, and are 

used to subtract the background in the likelihood.

• The data in the extended mJ/ypK range including the sidebands 

is passed to the amplitude fit

“sFit”
PRL 115, 072001 (2015)



Background modeling
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The remaining background 

can be handled in two ways. 

In the fit we minimize:

• Wi =1; no event weights. Sideband data used to construct 6D 

model of the background which is added to the signal PDF:

𝛽 = 5.4% background fraction

• Data only in the Lb
0 signal range passed to the amplitude fit.

• Fitters using cFit and sFit were coded completely 

independently and used to cross-check each other.

“cFit” (default method)
PRL 115, 072001 (2015)



Helicity Formalism

• The matrix element for these 

decays is written using the 

helicity formalism.

• Each sequential decay 𝐴 →
𝐵𝐶 of a spin 𝐽𝐴 resonance 

adds a term:
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• 𝑅𝐴(𝑚𝐵𝐶) is the resonance parametrization used if A has a 

non-negligible natural width.

• The three arguments of Wigner’s D-matrix are Euler 

angles describing the rotation from helicity frame of A to 

helicity frame of B

Helicity coupling to final-state 

helicities 𝜆𝐵, 𝜆𝐶

Wigner D-matrix

Rest frame 

of A

Helicity frame 

of A



L* Matrix Element
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6 independent data variables:

1 mass, 5 angles

4-6 independent complex helicity 

couplings per Ln
* resonance 

Blatt-Weisskopf functions Breit-Wigner

Completely describes the decay

Λ𝑏 → Λ∗  𝐽 𝜓 with Λ∗→ 𝐾𝑝 and  𝐽 𝜓 → 𝜇𝜇



L* resonance model
15

• Large number of possibly contributing resonances, each 

contributing 4-6 complex amplitudes.

• Σ∗ → 𝑝𝐾− contributions would have Δ𝐼 = 1 and are 

excluded, based off expectation that they’re suppressed in 

analogy with Δ𝐼 =  1 2 rule in kaon decays.

?

# amplitudes



L* resonance model
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• We use two models in our fits to study the dependence on 

Λ∗ model.

• “Extended model” includes all states, all possible amplitudes

?

Total fit parameters:      146             

amplitudes



L* resonance model
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?

Total fit parameters:      64                146

• Helicity couplings are rewritten in terms of LS couplings:

amplitudes

• Reduced model excludes high-mass, high-spin states and 

also places limitations on L
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• Can interfering Λ∗ resonances reproduce the peaking 

structure seen in 𝑚  𝐽 𝜓𝑝?

• We use the extended model to answer this, with the 

philosophy being that we should throw everything we 

can at it before introducing pentaquark states.

So is it just a reflection?



Fit with L*pK- contributions only

• mKp looks fine, but mJ/yp looks terrible

• Addition of non-resonant terms, S*’s or extra L*’s doesn’t 

help.

• There is no ability to describe the peaking structure with 

conventional resonances!

19

PRL 115, 072001 (2015)



Pc
+ Matrix Element
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3-4 independent complex helicity couplings 

per Pc j
+ resonance depending on its JP

Blatt-Weisskopf functions 

Breit-

Wigner

One more angle than in Λ∗ decay: Pc
+

production angles must be defined relative 

to the Lb reference frame established for 

LbJ/yL* decay

1 mass (mJ/yp), 6 angles

all derivable from the L* decay variables

Completely describes the decay

Λ𝑏 → 𝑃𝑐𝐾 with 𝑃𝑐 →  𝐽 𝜓𝑝 and  𝐽 𝜓 → 𝜇𝜇



L* Plus Pc
+ Matrix Element
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• To add the two matrix elements together we need two 

additional angles to align the muon and proton helicity 

frames between the Λ∗ and 𝑃𝑐 decay chains.

– This is necessary to describe L*  plus Pc
+ interferences 

properly

𝜃𝑝

• With 𝜃𝑝, 𝛼𝜇 the full matrix element is written as 



Fit with L*’s and one Pc
+J/yp state
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• Try all JP of Pc
+ up to 7/2±

• Best fit has JP =5/2±. Still not a good fit

(extended L* model)

PRL 115, 072001 (2015)



Fit with L*’s and two Pc
+J/yp states
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• With two 𝑃𝑐 resonances we are able to describe the peaking 

structure!

• Obtain good fits even with the reduced L* model 

• Best fit has 𝐽𝑃(𝑃𝑐(4380), 𝑃𝑐(4450))=(3/2-, 5/2+), also (3/2+, 

5/2-) and (5/2+, 3/2-) are preferred 

(reduced L* model)

Pc(4450)+

Pc(4380)+

PRL 115, 072001 (2015)



Fit with L*’s and two Pc
+J/yp states

• Need for the 2nd broad 

Pc
+ state becomes 

visually apparent in the 

region where the L*pK-

background is the 

smallest
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Angular distributions

• Good description of the data in all 6 dimensions!

25

LHCb all mKp LHCb mKp>2 GeV

- +

L* interferences

All data Pc enriched region

PRL 115, 07201 (2015)



• J/yK- system is well 

described by the Λ∗

and Pc
+ reflections.

𝑃𝑐

26

No need for exotic J/yK- contributions

mKp<1.55 GeV 1.55<mKp

<1.70 GeV

1.70<mKp

<2.00 GeV 2.00 GeV<mKp

All mKp

PRL 115, 07201 (2015)



mKp<1.55 GeV 1.55<mKp

<1.70 GeV

1.70<mKp

<2.00 GeV

2.00 GeV<mKp

Data preference for opposite parity Pc
+ states
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Positive interference

between the Pc states

• Two opposite parity states necessary to generate the 

interference pattern

Negative interference

between the Pc states

(display before efficiency)

(display after efficiency)

- +

PRL 115, 07201 (2015)



Systematic uncertainties

• Uncertainties in the L* model dominate

• Quantum number assignment and resonance parametrization

are also sizeable.

28



Results

• Parameters of the Pc
+ states (and F.F. of well isolated Λ∗’s ) 
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State Mass (MeV) Width (MeV) Fit fraction (%)

Pc(4380)+ 4380 ± 8 ± 29 205 ± 18 ± 86 8.4 ± 0.7 ± 4.2

Pc(4450)+ 4449.8 ± 1.7 ± 2.5 39 ± 5 ± 19 4.1 ± 0.5 ± 1.1

L(1405) 15 ± 1 ± 6

L(1520) 19 ± 1 ± 4

• With the ℬ(Lb
0 J/y p K−) measurement (arXiv:1509.00292) 

we can also calculate the branching fractions:



Significances 

• Significances assessed using the extended model.

• This includes the dominant systematic uncertainties, coming 

from difference between extended and reduced L* model 

results.

• Fit quality improves greatly, and simulations of 
pseudoexperiments are used to turn the D(-2lnL) values to 

significances

30

D(-2lnL) Significance

0 → 1 𝑃𝑐 14.72 12𝜎

1 → 2 𝑃𝑐 11.62 9𝜎

0 → 2 𝑃𝑐 18.72 15𝜎

• Each of the states is overwhelmingly significant.



Resonance Phase Motion

• Relativistic Breit-Wigner function is used to model resonances 

31

𝐵𝑊 𝑚 𝑀0, Γ0 =
1

𝑀0
2 −𝑚2 − 𝑖𝑀0Γ(𝑚)

, Γ 𝑚 = Γ0
𝑞

𝑞0

2𝐿+1
𝑀0

𝑚
𝐵𝐿
′ 𝑞, 𝑞0, 𝑑

2

𝑀0

• The complex function 𝐵𝑊 𝑚 𝑀0, Γ0 displayed in an Argand 

diagram exhibits a circular trajectory.



Resonance Phase Motion

• The Breit-Wigner shape for individual 𝑃𝑐’s is replaced with 

6 independent amplitudes in 𝑀0 ± Γ0
• 𝑃𝑐 4450 : shows resonance behavior: a rapid counter-

clockwise change of phase across the pole mass

• 𝑃𝑐 4380 : does show large phase change, but is not 

conclusive. 

Plot fitted values for 

amplitudes in an 

Argand diagram

Breit-Wigner 

Prediction

Fitted Values

32

PRL 115, 072001 (2015)



Interpretations of the states
33

“plain” diquarks
hydro-

charmonium
molecular triquark

meson

baryon

• Already ~50 citations on the arXiv, with a variety of models 

being proposed.

• Most common models employ molecular binding or additional 

hadron building blocks of diquarks or triquarks.

• Additional explanations have been offered in terms of 

kinematical effects. However these cannot explain two states.



Where else to look for these pentaquarks?
34

• There are many ideas on where to look. None will be as 

ideal as the clean  𝐽 𝜓 signature plus two charged tracks 

forming a secondary vertex. This was a good channel to 

accidentally find this in.

• They can be looked for in decays to other charmonium

states: 𝜂𝑝, 𝜒𝑐𝑝

• Or to open charm pairs: Λ𝑐 𝐷, Λ𝑐𝐷
∗, Σ 𝐷

• Would be very interesting to see them from different 

sources:

• Direct production: However there is a difficulty from huge number 

of protons coming from primary vertices

• It’s been proposed to look for these states in 𝛾𝑝 →  𝐽 𝜓 𝑝
(arXiv:1508.00339,1508.00888, and 1508.01496 ) 



And for other pentaquarks?

• Discovery of further states is crucial for shedding light on 

internal bindings and the nature of these states.

• Should look for more 𝑐  𝑐𝑢𝑢𝑑 resonances: with different 

charge, spin-parity, isospin

• Huge number of possibilities. One could look for them 

decaying to many combinations of a baryon + meson.

• Given the trend of finding exotic hadron candidates with 

heavy quark content, finding them in decays of Λ𝑏’s or 

other b-baryons is an attractive possibility.

• A systematic search should be done, as we also learn 

from non-observations.
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Conclusions
36

• Two pentaquark candidates decaying to J/yp have been observed with 

overwhelming significance in a state of the art amplitude analysis. Both 

are absolutely needed to obtain a good description of the data.

• The nature of the states is unknown. For elucidation, more sensitive 

studies as well as searches for other pentaquark candidates will be 

absolutely necessary.

• Towards this effort we continue to fully utilize the Run 1 data, and have 

increased statistics on the way. LHCb expects 8 fb-1 in Run 2 (-2018) 

followed by the detector/luminosity upgrade which will bring ~50 fb-1 by 

2028.

• We look forward to more input from theory and other experiments.



BACKUP SLIDES



Complete set of fit fractions
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Extended Model with Two 𝑃𝑐 Resonances
39


