

PRECISION MEASUREMENT OF THE CP-VIOLATING PHASE φ_s AT LHCb

Francesca Dordei, INFN - Cagliari (IT) On behalf of the LHCb Collaboration

CERN SEMINAR

CERN, 7th May 2019

Sakharov Conditions

[A. D. Sakharov, JETP Lett.5, 24 (1967)]

- 1. Baryon Number Violation
- 2. C and CP violation
- 3. Interactions out of thermal equilibrium

[Rev. Mod. Phys. 88, 015004 (2016)]

- Baryon asymmetry of the Universe: $n_b/n_\gamma \sim 10^{-10}$
- CP violation in the SM does not account for it
- There must be **New Physics** and **new sources of CP** violation

How to find New Physics at the LHC

- Most HEP direct discoveries have been preceeded by indirect evidence first!
- If we don't see New Physics directly at the LHC can indirect evidence guide us where to look (or what to build) next?

Flavour physics: a history of success

Quark transitions

In the SM quarks can change flavour by emission of a W^{\pm} boson

• So must also change charge

(i.e. from up-type to down-type or vice-versa)

• The probability for such a transition is governed by the elements of the 3×3 unitary **CKM matrix**

Quark transitions II

In the SM quarks can change flavour by emission of a W^{\pm} boson

• So must also change charge

(i.e. from up-type to down-type or vice-versa)

- The probability for such a transition is governed by the elements of the 3×3 unitary **CKM matrix**
- It exhibits a clear hierarchy

CP violation in the Standard Model

• Wolfenstein parameterisation: CKM matrix described by 4 parameters λ , A, ρ , η

$$\begin{split} \mathcal{V}_{\mathcal{CKM}} &= \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} |V_{ud}| & |V_{us}| & |V_{ub}|e^{-i\gamma} \\ -|V_{cd}| & |V_{cs}| & |V_{cb}| \\ |V_{td}|e^{-i\beta} & -|V_{ts}|e^{i\beta_s} & |V_{tb}| \end{pmatrix} \\ &= \underbrace{\begin{pmatrix} 1 - \lambda^2/2 - \lambda^4/8 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda + A^2\lambda^5 \left[1 - 2(\rho + i\eta)\right]/2 & 1 - \lambda^2/2 - \lambda^4(1 + 4A^2)/8 & A\lambda^2 \\ A\lambda^3 \left[1 - (\rho + i\eta)(1 - \lambda^2/2)\right] & -A\lambda^2 + A\lambda^4 \left[1 - 2(\rho + i\eta)\right]/2 & 1 - A^2\lambda^4/2 \end{pmatrix}}_{\text{Wolfenstein parametrisation}} + \mathcal{O}(\lambda^6) \\ & \lambda = \sin\left(\theta_c\right) \approx 0.22, \ \eta \approx 0.3 \end{split}$$

- 3 quark generations allow for a CP violating phase: η is the only CPV source in the SM
- But η is small \rightarrow where did the anti-matter go?
- Test the consistency of CKM picture within SM experimentally

Unitarity triangle

Unitarity $V_{\text{CKM}} \cdot V_{\text{CKM}}^{\dagger} = I$ imposes several conditions which give rise to "unitarity" triangles

Francesca Dordei - Precision measurement of the CP-violating phase φ s at LHCb

[CKM Fitter]

The CKM fit: a lot of room for NP

 The SM works so remarkably well that we have to make more and more precise measurements

 O(20%) NP contributions to most looplevel processes (FCNC) are still allowed
 See e.g. J. Charles at al arXiv:1309.2293 [hep-ph]

 Interesting comparison of tree-level vs higher-order observables. In the latter, unknown particles could contribute.

9

B flavour mixing

• Neutral B_s^0 mesons can oscillate between their particle and anti-particle states

The physical mass eigenstates (L,H) are admixtures of the weak eigenstates:

 $|B_L > = p | B_s^0 > + q | \overline{B}_s^0 >$ $|B_H > = p | B_s^0 > - q | \overline{B}_s^0 >$

- with mass difference $\Delta m = m_H m_L$ and decay-width difference $\Delta \Gamma = \Gamma_L \Gamma_H$
- flavor at production (t=0) could be different from flavour at decay time t

CP violation

° Must have **two interfering amplitudes** with different strong (δ) and weak (ϕ) phases

• For a B_s^0 decay to a **CP eigenstate** f, CP-violating effects depend on $\lambda_f = \frac{q}{p} \frac{A_f}{A_f}$

CP violation

° Must have **two interfering amplitudes** with different strong (δ) and weak (ϕ) phases

• For a B_s^0 decay to a **CP eigenstate** f, CP-violating effects depend on $\lambda_f = \frac{q}{p} \frac{A_f}{A_f}$

CPV in B_s^0 mixing and decays

[Fleischer, PRD 60 (1999) 073008] [Ciuchini et al., PRL 95 (2005) 221804] [Faller et al., PRD 79 (2009) 014005, 014030] [Jung, PRD 86 (2012) 053008] [Jung, Schacht, PRD 91 (2015) 034027] [De Bruyn, Fleischer, JHEP 03 (2015) 145]

MEASURABLE PHASE

CPV due to mixing-decay interference

$$\varphi_{s} = \arg(\lambda_{f(c\bar{c}s)}) = \varphi_{s}^{SM} + \Delta \varphi_{s}^{peng} + \Delta \varphi_{s}^{NP}$$
$$-2\beta_{s}$$

GLOBAL FIT PREDICTION

$$\varphi_s^{SM} = -0.03686^{+0.00096}_{-0.00068}$$
 rad
[CKMFitter]

Francesca Dordei - Precision measurement of the CP-violating phase qs at LHCb

 J/ψ

X

φ_s before Winter 2019

GLOBAL FIT PREDICTION $\varphi_s^{SM} = -0.03686^{+0.00096}_{-0.00068}$ rad [CKMFitter]

- Golden channel exploited by LHCb, ATLAS, CMS: $B_s^0 \rightarrow J/\psi\phi$
- LHCb also measured many other channels

World average (dominated by LHCb) consistent with predictions;
Exp. uncertainty (31 mrad) almost a factor of 30 larger than uncert. of indirect determination when penguin pollution is ignored.

$$\varphi_s^{c\bar{c}s} = -0.021 \pm 0.031 \text{ rad}$$

 $\Delta\Gamma_s = 0.090 \pm 0.005 \text{ ps}^{-1}$
[HFLAV 2018]

The LHCb detector

The tracker upstream the magnet

The tracker downstream the magnet

The Inner Tracker (IT)

Three stations each with four planes of silicon micro-strip sensors around the beam pipe • Total silicon area of 4.2 m²

Performance of the LHCb Outer Tracker; IINST 9 (2014) P01002

Francesca Dordei - Precision measurement of the CP-violating phase qs at LHCb

Outer Tracker (OT)

Three stations each with four planes $(0^{\circ}, +5^{\circ}, -5^{\circ}, 0^{\circ})$ of straw

• Gas Mixture $Ar/CO_2/O_2$

17

Performance of the LHCb RICH detector ad the LHC Eur.Phys.J. C73 (2013) 2431

Particle identification

Particle identification

with 276 multi-wire proportional chambers Electromagnetic CAL and • Inner part of the first Hadronic CAL M5 station equipped with 12 Scintillator planes + absorber M4 magnet ECAL HCAL RICH2 GEM detectors material planes M1 • Used heavily in trigger • Used in the hardware trigger (L0) selection Performance of the Muon Identification system JINST 8 (2013) P10020 LHCb Detector Performance 5m 10 m 15 m 20 m Int. J. Mod. Phys. A30 (2015) 1530022

Muon Chambers

5 stations, each equipped

Particle identification

with 276 multi-wire proportional chambers Electromagnetic CAL and • Inner part of the first Hadronic CAL M5 station equipped with 12 Scintillator planes + absorber magnet ECAL HCAL RICH2 GEM detectors material planes • Used heavily in trigger • Used in the hardware trigger PID performance (L0) selection • Kaon ID eff. $\sim 95\%$ • Pion mis-ID fraction of $\sim 5\%$ • Muon ID eff. $\sim 97\%$ Performance of the Muon Identification system JINST 8 (2013) P10020 LHCb Detector Performance 5m 10 m 15 m 20 m Int. J. Mod. Phys. A30 (2015) 1530022

Francesca Dordei - Precision measurement of the CP-violating phase qs at LHCb

Muon Chambers

5 stations, each equipped

Trigger principles

BEAUTY SIGNATURES

- Mass $m(B^+) = 5.28 \text{ GeV}/c^2$
- Daughter $p_T O(1 \text{ GeV/c})$
- Lifetime $\tau(B) \sim 1.5$ ps
- Flight distance ~1 cm
- Detached secondary vertex

Since Run II the detector is calibrated and aligned online:

- Same reconstruction online and offline
- No need of offline data processing

INTEGRATED RECORDED LUMINOSITY

The full LHCb data set is about 9fb⁻¹

THANKS LHC!! **2015: 0.3** fb⁻¹ **2016: 1.6** fb⁻¹ 2017: 1.7 fb⁻¹ 2018: 2.1 fb⁻¹

Large number of beauty hadrons: $\sigma_{b\bar{b}}(7 \text{ TeV}) = 72.0 \pm 0.3 \pm 6.8 \ \mu\text{b}$ $\sigma_{b\bar{b}}(13 \text{ TeV}) = 154.3 \pm 1.5 \pm 14.3 \ \mu\text{b}$ [PRL 118 (2017) 052002]

Decay channels discussed today

$B_s^0 \rightarrow J/\psi(\rightarrow \mu^+\mu^-)K^+K^-$

In $B_s^0 \rightarrow J/\psi KK$ the final state is a mixture of CP-even (L = 0, 2) and CP-odd (L = 1 + S-wave) components: $\circ |B_L \rangle = p |B_s^0 \rangle + q |\overline{B}_s^0 \rangle \approx CP - even$ $\circ |B_H \rangle = p |B_s^0 \rangle - q |\overline{B}_s^0 \rangle \approx CP - odd$ Requires an **angular analysis** and allows to obtain $\Delta\Gamma_s$ and Γ_s $B_s^0 \rightarrow J/\psi(\rightarrow \mu^+\mu^-)\pi^+\pi^-$

Rich resonant and non-resonant structure in the $\pi^+\pi^-$ mass spectrum.

Mainly CP-odd: requires an amplitude analysis to check the effect of the small CP-even component and it allows to measure Γ_H

Francesca Dordei - Precision measurement of the CP-violating phase qs at LHCb

Measuring φ_s

Definition of time-dependent CP asymmetry: $A_{CP}(t) = \frac{\Gamma(\bar{B}_{S}^{0} \to f) - \Gamma(B_{S}^{0} \to f)}{\Gamma(\bar{B}_{S}^{0} \to f) + \Gamma(B_{S}^{0} \to f)} = \eta_{f} \sin \varphi_{s} \sin(\Delta m_{s} t)$

Experimentally it becomes: $A_{CP}(t) = \eta_f \cdot e^{-\frac{1}{2}\Delta m_s^2 \sigma_t^2} \cdot (1 - 2\omega) \cdot \sin \varphi_s \cdot \sin(\Delta m_s t)$

Critical requirements:

- CP eigenvalue of the final state $\eta_f \rightarrow$ angular analysis
- Excellent decay-time resolution $\sigma_t \sim 45$ fs
- \circ Tagging of meson flavour @ production: probability of getting the wrong tag ω
- + in the fit need to model decay-time efficiency $\varepsilon(t)$ (due to selection and reconstruction) and angular efficiency $\varepsilon(\Omega)$

First harvest of LHCb Run 2 data

- New results obtained analysing 2015 (0.3 fb⁻¹) and 2016 (1.6 fb⁻¹) data presented at Moriond EW '19
- $B_s^0 \rightarrow J/\psi K^+ K^-$ [LHCb-PAPER-2019-013] and $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$ [arXiv:1903.05530]
- Not just an update: Run I strategy duly rediscussed and various methods carefully scrutinized and validated
- ° Simultaneous fit to the signal decay time and 3 helicity angles

Francesca Dordei - Precision measurement of the CP-violating phase qs at LHCb

Selection and mass fit

New: Boosted decision tree is trained to select signal candidates

- Injected negative weighted MC to subtract $\Lambda_b^0 \to J/\psi pK$
- Signal width is a function of per-candidate mass error to account for correlation with $\cos(\theta_{\mu})$

• Use the wrong sign (WS) combination $(\pi^{\pm}\pi^{\pm})$ to determine the shape of the combinatorial background

Francesca Dordei - Precision measurement of the CP-violating phase qs at LHCb

Decay-time resolution

Fundamental to resolve fast $B_s^0 - \overline{B}_s^0$ oscillations:

The first contribution is ~ 20 times larger than the second, they become comparable only at several B lifetimes

How to determine σ_t in data?

- Since the resolution of the secondary vertex is dominating, we reconstruct fake $B_s^0 \rightarrow \mu\mu hh$ with all tracks coming from the PV (prompt $J/\psi + 2$ random PV kaons or pions) and without using selections on decay time
- By definition for these candidates $t = 0 \pm \sigma_t$
- Method validated in MC comparing prompt and signal resolutions

Fundamental to resolve fast $B_s^0 - \overline{B}_s^0$ oscillations:

The first contribution is ~ 20 times larger than the second, they become comparable only at several B lifetimes

How to determine σ_t in data?

- Since the resolution of the secondary vertex is dominating, we reconstruct fake $B_s^0 \rightarrow \mu\mu hh$ with all tracks coming from the PV (prompt $J/\psi + 2$ random PV kaons or pions) and without using selections on decay time
- By definition for these candidates $t = 0 \pm \sigma_t$
- Method validated in MC comparing prompt and signal resolutions

Decay-time resolution

$$\sigma_{eff} = \sqrt{(-2/\Delta m_s^2) lnD}, \text{ with } D = \sum_{i=1}^3 f_i e^{-\sigma_i^2 \Delta m_s^2/2}$$

$$\sigma_{eff} = 45.5 \text{ fs} \qquad B_s^0 \to J/\psi K^+ K^- \qquad \sigma_{eff} = 41.5 \text{ fs}$$

Francesca Dordei - Precision measurement of the CP-violating phase qs at LHCb

 $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$

Decay-time efficiency

Use ~550k $B^0 \rightarrow J/\psi K^* (892)^0$ as a data control channel (thanks to its well known lifetime $\tau_{B^0} = \frac{1}{\Gamma_d} = 1.520 \pm 0.004 \text{ ps}$).

Efficiency obtained fitting simultaneously B^0 data and $B^0 - B_s^0$ data-corrected simulations fixing known lifetimes and resolutions:

$$\varepsilon_{B_{S}^{0}}^{data}(t) = \varepsilon_{B^{0}}^{data}(t) \times \frac{\varepsilon_{B_{S}^{0}}^{MC}(t)}{\varepsilon_{B^{0}}^{MC}(t)}$$

Small correction to account for differences between signal and control channels

By product: measure directly $\Gamma_s - \Gamma_d$ in $B_s^0 \to J/\psi K^+ K^-$ and $\Gamma_H - \Gamma_d$ in $B_s^0 \to J/\psi \pi^+ \pi^-$ being independent on the value and uncertainty of Γ_d

Interesting for comparisons with HQE where Γ_s / Γ_d is precisely predicted.

Decay-time efficiency II

Strategy validated using $B^0 \rightarrow J/\psi K^*(892)^0$ and $B^+ \rightarrow J/\psi K^+$ data control channels

E.g. $B^+ \rightarrow J/\psi K^+$

- Determine the B^+ lifetime using $B^0 \to J/\psi K^{*0}$ as control channel
- Replace the B_s^0 MC in the efficiency determination with B^+ MC and determine the efficiency
- Fit *B*⁺ decay time distribution in data with this efficiency

 $\Gamma_u - \Gamma_d = -0.0478 \pm 0.0013 \text{ ps}^{-1} \text{ (stat only)}$ vs $(\Gamma_u - \Gamma_d)^{\text{PDG}} = -0.0474 \pm 0.0023 \text{ ps}^{-1}$

Angular efficiency

- Kinematic selection and detector acceptance are causing non uniform efficiency as function of decay angles
- Efficiency taken from MC after iterative reweighting
 - Checks done in control data:
 - Measurement of $B^0 \rightarrow J/\psi K^{*0}$ polarisation amplitudes in agreement with world average
 - Correctly retrieved muon helicity distribution (expected $1 \cos^2 \theta_{\mu}$ dependence) in $B^+ \rightarrow J/\psi K^+$ decays

[LHCb-PAPER-2019-013] [arXiv:1903.05530]

Flavour tagging

- Two tagging algorithms are used: **opposite side** and **same side**. For each algorithm true mistag probability is calibrated assuming linear dependency with estimated one $\omega = p_0 + p_1(\eta - < \eta >)$
- Tagging power is given as tagging efficiency times dilution squared $\varepsilon_{tag}D^2$ with $D = (1 2\omega)$

 $\sim 30\%$ relative improvement of tagging power

• More tagging power = better exploitation of data!

[LHCb-PAPER-2019-013] [arXiv:1903.05530]

Flavour tagging

- Two tagging algorithms are used: opposite side and same side. For each algorithm true mistag probability is calibrated assuming linear dependency with estimated one
 ω = p₀ + p₁(η -< η >)
- Tagging power is given as tagging efficiency times dilution squared $\varepsilon_{tag}D^2$ with $D = (1 - 2\omega)$

$$\begin{split} \varepsilon_{tag} D^2 &= 4.73 \pm 0.34 \% & \text{Run1 was} \\ B_s^0 \to J/\psi K^+ K^- & \approx 3.73 \% \\ \varepsilon_{tag} D^2 &= 5.06 \pm 0.38 \% & \text{Run1 was} \\ B_s^0 \to J/\psi \pi^+ \pi^- & \approx 3.89 \% \end{split}$$

More tagging power = better exploitation of data!

[LHCb-PAPER-2019-013]

Systematics for $B_s^0 \to J/\psi K^+ K^-$

 φ_s mainly affected by Time res. & Ang. Acc., $\Delta\Gamma_s$ ($|\lambda|$) by Mass factorisation (& Ang. Acc.), $\Gamma_s - \Gamma_d$ by Time eff.

Source	$ A_0 ^2$	$ A_{\perp} ^2$	$\phi_s \; [{ m rad} \;]$	$ \lambda $	$\delta_{\perp} - \delta_0 \; [\mathrm{rad} \;]$	$\delta_{\parallel} - \delta_0 \; [{ m rad} \;]$	$\Gamma_s - \Gamma_d \ [\mathrm{ps^{-1}}\]$	$\Delta\Gamma_s \ [\mathrm{ps^{-1}}\]$	$\Delta m_s [\mathrm{ps}^{-1}]$
Mass width parametrisation	0.0006	0.0005	-		0.05	0.009	-	0.0002	0.001
Mass factorisation	0.0002	0.0004	0.004	0.0037	0.01	0.004	0.0007	0.0022	0.016
Multiple candidates	0.0006	0.0001	0.0011	0.0011	0.01	0.002	0.0003	0.0001	0.001
Fit bias	0.0001	0.0006	0.001	-	0.02	0.033	-	0.0003	0.001
$C_{\rm SP}$ factors	-	0.0001	0.001	0.0010	0.01	0.005	-	0.0001	0.002
Time res.: applicability of prompt	-	-	_	-	-	0.001	-	-	0.001
Time res.: t bias	-	-	0.0032	0.0010	0.08	0.001	0.0002	0.0003	0.005
Time res.: wrong PV	-	-	-	-	-	0.001	-	-	0.001
Ang. acc.: MC sample size	0.0003	0.0004	0.0011	0.0018	-	0.004	-	-	0.001
Ang. acc.: BDT correction	0.0020	0.0011	0.0022	0.0043	0.01	0.008	0.0001	0.0002	0.001
Ang. acc.: low-quality tracks	0.0002	0.0001	0.0005	0.0014	-	0.002	0.0002	0.0001	-
Ang. acc.: $t \& \sigma_t$ dependence	0.0008	0.0012	0.0012	0.0007	0.03	0.006	0.0002	0.0010	0.003
Dectime eff.: statistical	0.0002	0.0003	-	-	-	-	0.0012	0.0008	-
Dectime eff.: kin. weighting	-	-	-	-	-	-	0.0002	-	-
Dectime eff.: p.d.f. weighting	-	-	-	-	-	-	0.0001	0.0001	-
Dectime eff.: $\Delta \Gamma_s = 0$ sim.	0.0001	0.0002	-	-	-	-	0.0003	0.0005	-
Length scale	-	-	-	-	-	-	-	-	0.004
Quadratic sum of syst.	0.0024	0.0019	0.0061	0.0064	0.10	0.037	0.0015	0.0026	0.018

[arXiv:1903.05530]

Systematics for $B_s^0 \to J/\psi \pi^+ \pi^-$

 $\Gamma_H - \Gamma_d$ mainly affected by Background, φ_s and $|\lambda|$ by Resonance modelling

Source	$\Gamma_{\rm H} - \Gamma_{B^0}$	$ \lambda $	ϕ_s	
	$[{\rm fs}^{-1}]$	$[\times 10^{-3}]$	[mrad]	
t acceptance	2.0	0.0	0.3	
$ au_{B^0}$	0.2	0.5	0.0	
Efficiency $(m_{\pi\pi}, \Omega)$	0.2	0.1	0.0	
t resolution width	0.0	4.3	4.0	
t resolution mean	0.3	1.2	0.3	1) Using reweighted WS samples in the fit
Background	3.0	2.7	0.6	2) Vary the background yields by $\pm 1\sigma$
Flavour tagging	0.0	2.2	2.3	, , , , , , , , , , , , , , , , , , , ,
Δm_s	0.3	4.6	2.5	
$\Gamma_{ m L}$	0.3	0.4	0.4	
B_c^+	0.5	-	-	
Resonance parameters	0.6	1.9	0.8	1) Vary Barrier factor 2) Device ND f_{1} ($\Gamma 00$)
Resonance modelling	0.5	28.9	9.0	2) Replace INK by $J_0(500)$
Production asymmetry	0.3	0.6	3.4	$\begin{array}{c} \text{Solution II} \\ \text{A} & \text{Add } o(770) \end{array}$
Total	3.8	29.9	11.0	4) Aut $p(770)$
	rdei - Precision measure	ement of the CP-viol	ating phase us a	t LHCb 30

[LHCb-PAPER-2019-013] [arXiv:1903.05530]

 $B_s^0 \rightarrow J/\psi K^+ K^-$

$$\begin{split} \varphi_s &= -0.083 \pm 0.041 \pm 0.006 \text{ rad} \\ &|\lambda| = 1.012 \pm 0.016 \pm 0.006 \\ \Gamma_s - \Gamma_d &= -0.0041 \pm 0.0024 \pm 0.0015 \text{ ps}^{-1} \\ &| \Delta \Gamma_s &= 0.0773 \pm 0.0077 \pm 0.0026 \text{ ps}^{-1} \end{split}$$

$$B_s^0 \rightarrow J/\psi \pi^+ \pi^-$$

$$\begin{split} \varphi_s &= -0.057 \pm 0.060 \pm 0.011 \text{ rad} \\ &|\lambda| = 1.01^{+0.08}_{-0.06} \pm 0.03 \\ \Gamma_H - \Gamma_d &= -0.050 \pm 0.004 \pm 0.004 \text{ ps}^{-1} \end{split}$$

 $\Gamma_s = 0.6538 \pm 0.0024 \pm 0.0015 \pm 0.0017 \text{ (input } \Gamma_d\text{) } \text{ps}^{-1}$

Combining the above + Run 1: $B_s^0 \rightarrow J/\psi KK$, $B_s^0 \rightarrow J/\psi \pi\pi$, $B_s^0 \rightarrow J/\psi KK$ high mass, $B_s^0 \rightarrow D_s D_s$, $B_s^0 \rightarrow \psi(2S)\varphi$

$$\begin{split} \varphi_s &= -0.041 \pm 0.025 \text{ rad} \\ |\lambda| &= 0.993 \pm 0.010 \\ \Gamma_s &= 0.6562 \pm 0.0021 \text{ ps}^{-1} \\ \Delta\Gamma_s &= 0.0816 \pm 0.0048 \text{ ps}^{-1} \end{split}$$

Correlations between the parameters and between the systematic uncertainties are taken into account.

Overview of LHCb combination

Combination of all LHCb (Run1 and 2) results

$$\begin{split} \varphi_s &= -0.041 \pm 0.025 \text{ rad} \\ |\lambda| &= 0.993 \pm 0.010 \\ \Gamma_s &= 0.6562 \pm 0.0021 \text{ ps}^{-1} \\ \Delta\Gamma_s &= 0.0816 \pm 0.0048 \text{ ps}^{-1} \end{split}$$

 φ_s 0.1 σ away from SM consistent with Standard Model

 φ_s 1.6 σ away from 0 consistent with no CPV in interference

 $|\lambda|$ consistent with 1 consistent with no direct CPV

[[]LHCb-PAPER-2019-013]

 $\Gamma_s - \Gamma_d$ consistent with HQE prediction

New HFLAV combination

At Moriond EW '19 also ATLAS presented preliminary results exploiting 2015-2017 data using $B_s^0 \rightarrow J/\psi K^+ K^-$.

ATLAS combination with Run 1 results is:

 $\varphi_s = -0.076 \pm 0.034 \pm 0.019 \text{ rad}$ $\Gamma_s = 0.669 \pm 0.001 \pm 0.001 \text{ ps}^{-1}$ $\Delta\Gamma_s = 0.068 \pm 0.004 \pm 0.003 \text{ ps}^{-1}$

[ATLAS-CONF-2019-009]

icliminar.

$$\varphi_s = -0.055 \pm 0.021 \text{ rad}$$

 $\Delta \Gamma_s = 0.0764^{+0.0034}_{-0.0033} \text{ ps}^{-1}$

[HFLAV PRELIMINARY]

Francesca Dordei - Precision measurement of the CP-violating phase $\boldsymbol{\phi}s$ at LHCb

Some considerations on the combination

- Combination among the experiments is getting more and more interesting
 - Entering in a regime where **penguin pollution** constraints are similar to the precision of the combination
- Strength of LHCb: **versatility** and possibility to measure φ_s also with many other channels, in particular $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$

The value of Γ_s shows tension between LHCb and ATLAS: • HFLAV (not including Run 2): $\Gamma_s^{HFLAV} = 0.6629 \pm 0.0018 \text{ ps}^{-1}$ • LHCb Run 2: $\Gamma_s^{LHCb} = 0.6538 \pm 0.0033 \text{ ps}^{-1} \rightarrow -2.4 \sigma$ from WA • ATLAS Run 2: $\Gamma_s^{ATLAS} = 0.669 \pm 0.0014 \text{ ps}^{-1} \rightarrow +2.7 \sigma$ from WA

> Tension between ATLAS and LHCb of >4 σ

Prospects for the future

- Include gain in trigger for $B_s^0 \rightarrow D_s^- D_s^+$ after Upgrade 1
- Same performances as in Run I
 - Assumed tagging power 4%
- Additional modes planned: $J/\psi \to ee, \eta' \to \rho^0 \gamma$ or, $\eta' \to \eta \pi \pi$ or $\gamma \gamma$ as cross cheks

300/fb: $\sigma^{STAT}(\varphi_s) \sim 4 \text{ mrad from } B_s^0 \rightarrow J/\psi KK \text{ only}$

- Vital FT performance maintains or improves
- $\boldsymbol{\varphi}_s$ expected to be statistically limited

Impact of Upgrade I and II very important for φ_s !

Control of penguin pollution

• U-spin or SU(3) flavour symmetry to constrain size of penguin with $b \rightarrow ccd$ (related by s-d spectator exchange)

• Penguin pollution and/or CP violation could be different for each polarisation state, $f \in (0, \bot, \|, S)$

 \rightarrow no sign yet of dependence in $B_s^0 \rightarrow J/\psi$ KK (also in Run 2) so penguins are small

• SU(3)_F: $B_s^0 \to J/\psi K^{*0}$ and $B^0 \to J/\psi \rho^0$ are b \to ccd transitions.

$$\begin{split} \Delta\phi_{s,0}^{J/\psi\,\phi} &= 0.000^{+0.009}_{-0.011}\,(\text{stat}) \quad {}^{+0.004}_{-0.009}\,(\text{syst})\,\text{rad} \\ \Delta\phi_{s,\parallel}^{J/\psi\,\phi} &= 0.001^{+0.010}_{-0.014}\,(\text{stat})\pm 0.008\,(\text{syst})\,\text{rad} \\ \Delta\phi_{s,\perp}^{J/\psi\,\phi} &= 0.003^{+0.010}_{-0.014}\,(\text{stat})\pm 0.008\,(\text{syst})\,\text{rad} \end{split}$$

Precision of ~10 mrad To be compared with the current precision of HFLAV of **21 mrad**

Fundamental to update these analyses, expected sensitivity at 300/fb is 1.5 mrad (statistically limited) + adding $B_s^0 \rightarrow J/\psi \omega$ and $B^0 \rightarrow J/\psi \varphi$ (E + PA diagrams only)

Conclusions and remarks

Interest in precision flavour measurements is stronger than ever
 If no direct evidence of NP pops out of the LHC,
 flavour physics can play a key role.

• All results in this sector in **good agreement with SM**, need to go to even **higher precision**: x2 statitics already available in Run 2.

• Good prospects for the precision measurements in the Upgrade phase of LHCb. Considering all modes:

 $300/\text{fb}: \sigma^{STAT}(\varphi_s) \sim 3 \text{ mrad}$

statistically limited.

"And if someone dares to yawn during your presentation, this pointer easily transforms from a laser to a taser!"

Francesca Dordei - Precision measurement of the CP-violating phase qs at LHCb

44

BACKUP

Historical record of indirect discoveries

GIM Mechanism

Observed branching ratio $K^0 \rightarrow \mu\mu$ $\frac{BR(K_L \rightarrow \mu^+\mu^-)}{BR(K_L \rightarrow all)} = (7.2 \pm 0.5) \cdot 10^{-9}$

In contradiction with theoretical expectation in the 3-Quark Model

Glashow, Iliopoulos, Maiani (1970):

Prediction of a 2nd up-type quark (1972), additional Feynman graph cancels the «u box graph»

But also e.g. CPV $K^0 \rightarrow \pi\pi$ that brought to CKM and 3rd generation, B mixing that brought to top mass extrapolation

Flavour tagging - references

Courtesy of S. Akar

Fit projections $B_s^0 \rightarrow J/\psi KK$

Table 4:	Parameter	estimates	for the	nominal	fit.	The first	uncertainty	is	statistical	and	\mathbf{the}
second sy	stematic.										

Parameter	Value
$\phi_s \ [rad]$	$-0.080 \pm 0.041 \pm 0.006$
$ \lambda $	$1.006 \pm 0.016 \pm 0.006$
$\Gamma_s - \Gamma_d [\mathrm{ps}^{-1}]$	$-0.0041 \pm 0.0024 \pm 0.0015$
$\Delta \Gamma_s [\mathrm{ps}^{-1}]$	$0.0772 \pm 0.0077 \pm 0.0026$
$\Delta m_s [\mathrm{ps}^{-1}]$	$17.705 \pm 0.059 \pm 0.018$
$ A_{\perp} ^2$	$0.2457 \pm 0.0040 \pm 0.0019$
$ A_0 ^2$	$0.5186 \pm 0.0029 \pm 0.0024$
$\delta_{\perp} - \delta_0$	$2.64 \pm 0.13 \pm 0.10$
$\delta_{\parallel} - \delta_0$	$3.061^{+0.084}_{-0.073} \pm 0.037$

Table	5:	The	correlatio	n matrix	including	the	statistical	and	systematic	correlations	between
the pa	arai	nete	rs.								

	ϕ_s	$ \lambda $	$\Gamma_s - \Gamma_d$	$\Delta\Gamma_s$	Δm_s	$ A_{\perp} ^2$	$ A_0 ^2$	δ_{\perp}	δ_{\parallel}
ϕ_s	1.00	0.16	-0.05	0.02	0.01	-0.03	0.00	0.04	-0.01
$ \lambda $		1.00	0.06	-0.09	0.07	0.05	-0.02	0.09	0.02
$\Gamma_s - \Gamma_d$			1.00	-0.46	0.07	0.35	-0.24	0.04	0.05
$\Delta\Gamma_s$				1.00	-0.06	-0.65	0.46	-0.10	-0.02
Δm_s					1.00	0.01	0.01	0.61	-0.00
$ A_{\perp} ^2$						1.00	-0.64	0.07	0.09
$ A_0 ^2$							1.00	-0.03	-0.02
δ_{\perp}								1.00	0.24
δ_{\parallel}									1.00

49

LHCb in the φ_s game

LHCb optimised with φ_s as a key goal. In particular it brings to the game:

High signal yields and high purity

collept de au time recelution

LHCb entered the game

LHCb optimised with φ_s as a key goal. In particular it brings to the game:

50

ATLAS systematics

Table 5: Summary of systematic uncertainties assigned to the physical parameters of interest.

	ϕ_s	$\Delta \Gamma_s$	Γ_s	$ A_{\parallel}(0) ^2$	$ A_0(0) ^2$	$ A_{S}(0) ^{2}$	δ_{\perp}	δ_{\parallel}	$\delta_{\perp} - \delta_S$
	[rad]	$[ps^{-1}]$	$[ps^{-1}]$				[rad]	[rad]	[rad]
Tagging	1.7×10^{-2}	0.4×10^{-3}	0.3×10^{-3}	0.2×10^{-3}	0.2×10^{-3}	2.3×10^{-3}	1.9×10^{-2}	2.2×10^{-2}	2.2×10^{-3}
Acceptance	0.7×10^{-3}	$< 10^{-4}$	$< 10^{-4}$	0.8×10^{-3}	0.7×10^{-3}	2.4×10^{-3}	3.3×10^{-2}	1.4×10^{-2}	2.6×10^{-3}
ID alignment	0.7×10^{-3}	0.1×10^{-3}	0.5×10^{-3}	$< 10^{-4}$	$< 10^{-4}$	$< 10^{-4}$	1.0×10^{-2}	7.2×10^{-3}	$< 10^{-4}$
S-wave phase	0.2×10^{-3}	$< 10^{-4}$	$< 10^{-4}$	0.3×10^{-3}	$< 10^{-4}$	0.3×10^{-3}	1.1×10^{-2}	2.1×10^{-2}	8.3×10^{-3}
Background angles model:									
Choice of fit function	1.8×10^{-3}	0.8×10^{-3}	$< 10^{-4}$	1.4×10^{-3}	0.7×10^{-3}	0.2×10^{-3}	8.5×10^{-2}	1.9×10^{-1}	1.8×10^{-3}
Choice of $p_{\rm T}$ bins	1.3×10^{-3}	0.5×10^{-3}	$< 10^{-4}$	0.4×10^{-3}	0.5×10^{-3}	1.2×10^{-3}	1.5×10^{-3}	7.2×10^{-3}	1.0×10^{-3}
Choice of mass interval	0.4×10^{-3}	0.1×10^{-3}	0.1×10^{-3}	0.3×10^{-3}	0.3×10^{-3}	1.3×10^{-3}	4.4×10^{-3}	7.4×10^{-3}	2.3×10^{-3}
Dedicated backgrounds:									
B^0_d	2.3×10^{-3}	1.1×10^{-3}	$< 10^{-4}$	0.2×10^{-3}	3.1×10^{-3}	1.4×10^{-3}	1.0×10^{-2}	2.3×10^{-2}	2.1×10^{-3}
$\Lambda_b^{\ddot{u}}$	1.6×10^{-3}	0.4×10^{-3}	0.2×10^{-3}	0.5×10^{-3}	1.2×10^{-3}	1.8×10^{-3}	1.4×10^{-2}	2.9×10^{-2}	0.8×10^{-3}
Fit model:									
Time res. sig frac	1.4×10^{-3}	1.1×10^{-3}	$< 10^{-4}$	0.5×10^{-3}	0.6×10^{-3}	0.6×10^{-3}	1.2×10^{-2}	3.0×10^{-2}	0.4×10^{-3}
Time res. $p_{\rm T}$ bins	3.3×10^{-3}	1.4×10^{-3}	0.1×10^{-2}	$< 10^{-4}$	< 10 ⁻⁴	0.5×10^{-3}	6.2×10^{-3}	5.2×10^{-3}	1.1×10^{-3}
	_	_	_	_	_	_	_	_	_
Total	1.8×10^{-2}	0.2×10^{-2}	0.1×10^{-2}	0.2×10^{-2}	0.4×10^{-2}	0.4×10^{-2}	9.7×10^{-2}	2.0×10^{-1}	0.1×10^{-1}

Penguin pollution roadmap

- ° With increasing precision crucial to understand penguin pollution
- Can use U-spin and SU(3) related modes, where penguin not suppressed, to determine its size [S. Faller, R. Fleischer, M. Jung, T. Mannel, arXiv:0809.0842]

Golden modes:
$$b \rightarrow c\bar{c}s$$
 amplitude $(i = 0, ||, \bot)$

$$A'_i(b \to c\overline{c}s) = \left(1 - \frac{\lambda^2}{2}\right) A'_i \left[1 + \epsilon a'_i e^{i\theta'} e^{i\gamma}\right]$$

Control modes:
$$b \rightarrow c \bar{c} d$$
 amplitude

$$A_i(b \rightarrow c\overline{c}d) = -\lambda A_i \left[1 + a_i e^{i\theta} e^{i\gamma}\right]$$

Overall λ factor, BF is suppressed

 $a_i'e^{i\theta'}$: Penguin/Tree ratio in $b \to c\bar{c}s$ where $\lambda \equiv |V_{us}| \approx 0.226, \epsilon \equiv \frac{\lambda^2}{1-\lambda^2} \approx 0.054, \gamma$ unitarity triangle angle.

 $a_i^{\prime}e^{i\theta^{\prime}}$: Penguin/Tree ratio in $b \rightarrow c\bar{c}d$

Absence of ϵ , penguin effects are magnified.

SU(3): $a_i' = a_i, \theta_i' = \theta_i$. Extract $\Delta \varphi_s^{peng}(a_i, \theta_i)$ and $\Delta \beta^{peng}(a_i, \theta_i)$ from t to CP parameters and BF.

Penguin pollution roadmap φ_s

Studied at LHCb with 3 fb^{-1:}

- $B^0 \rightarrow J/\psi\rho$ (BF, C and S) [JHEP11(2015)082]
- $B_s^0 \rightarrow J/\psi K^{*0}$ (BF and C), has no PA and E [PLB742(2015)38-49]

Measure penguin phase shift for each polarisation state, f \in (0, \perp , ||, S) [JHEP 11 (2015) 082]

$$\begin{split} &\Delta\phi_{s,0}^{J/\psi\,\phi} = 0.000^{+0.009}_{-0.011}~(\text{stat}) \quad {}^{+0.004}_{-0.009}~(\text{syst})\,\text{rad} \\ &\Delta\phi_{s,\parallel}^{J/\psi\,\phi} = 0.001^{+0.010}_{-0.014}~(\text{stat}) \pm 0.008~(\text{syst})\,\text{rad} \\ &\Delta\phi_{s,\perp}^{J/\psi\,\phi} = 0.003^{+0.010}_{-0.014}~(\text{stat}) \pm 0.008~(\text{syst})\,\text{rad} \end{split}$$

Small penguin shift ~0.06° wrt experimental precision $\sigma(\varphi_s)$ ~1.7°!!

Side note: φ_s from penguin decays

• Include gain in trigger after Upgrade 1

300/fb: $\sigma^{STAT}(\varphi_s) \sim 11 \text{ mrad from } B_s^0 \rightarrow \phi \phi$ 300/fb: $\sigma^{STAT}(\varphi_s) \sim 9 \text{ mrad from } B_s^0 \rightarrow K\pi K\pi$

- $B_s^0 \rightarrow \phi \phi$ will remain stat. limited
- Limiting syst for $B_s^0 \rightarrow K\pi K\pi < 30$ mrad from MC (important to exploit rapid MC production) and modelling resonances.

Sakharov Conditions

[A. D. Sakharov, JETP Lett.5, 24 (1967)]

- 1. Baryon Number Violation
- 2. C and CP violation
- 3. Interactions out of thermal equilibrium

[Rev. Mod. Phys. 88, 015004 (2016)]

- Baryon asymmetry of the Universe: $n_b/n_{\gamma} \sim 10^{-10}$
- CP violation in the SM does not account for it
- There must be **New Physics** and **new sources of CP** violation