

Dmytro Volyanskyy Max-Planck-Institut für Kernphysik (Heidelberg, Germany) on behalf of the LHCb collaboration

Invited seminar at the Karlsruhe Institute of Technology (Instituts-Seminar des IKP und IEKP) 29 May 2012, Germany

Outline

MAX-PLANCK-INSTITUT FÜR KERNPHYSIK Heidelberg

16.5. 2010 9:31:19 Run 71883 Event 6781700 bld 2186

29.05.2012, Karlsruhe

Part 1: LHCb experiment

LHC complex

LHC: largest and most sophisticated scientific instrument ever built

 \rightarrow world's highest energy and beam intensity particle accelerator

• Large Hadron Collider beauty experiment – one of the major projects at the LHC

29.05.2012, Karlsruhe

LHCb project history

MAX-PLANCK-INSTITUT FÜR KERNPHYSIK Heidelberg

- Project conceived in 1994
- 10 years of R&D: numerous test beam campaigns and MC simulations for every subcomponent
- 2004-2008: detector production, installation and commissioning phase
- Collision data taking since 10/2009
- Manpower: 804 scientists from 55 institutes in 15 countries (as of 03/2012)

LHCb objectives

MAX-PLANCK-INSTITUT FÜR KERNPHYSIK HEIDELBERG

•LHC delivers unprecedented amount of heavy flavor particles

- Great opportunity to perform high-precision measurements and study rare processes in the heavy flavor sector
- LHCb is mainly devoted to study the physics of the heaviest hadrons beauty flavored ones
- CP violation in the B hadron sector: powerful test of the Standard Model (SM), which accommodates this phenomena but doesn't explain it
- New Physics may enter via contributions from virtual heavy particles in loop-mediated processes giving access to scales greater than the LHC centre-of-mass energy
- LHCb's major assignments:
 - → measure processes strongly suppressed in SM and search for deviations from SM predictions – hints of the New Physics
 - → improve measurements on CKM elements and overconstrain the unitarity triangles
 - \rightarrow study physics of FCNC via e.g. $b \rightarrow s \gamma$ transition

LHCb spectrometer

MAX-PLANCK-INSTITUT FÜR KERNPHYSIK Heidelberg

=> LHCb spectrometer: combination of tracking and PID detectors covering full acceptance

- Forward spectrometer with planar detectors: optimized for the forward peaked heavy quark production at the LHC
- covers about 4% of the solid angle, but captures around 40% of the heavy quark production cross-section
- Detector acceptance: 1.9<η<4.9 fully covered by the tracking system
 → unique at the LHC
- Size: 10m high, 13m wide, 21m long
- Weight: ~5600 tons
- Number of r/o channels: ~10⁶
- Designed to run at a moderate luminosity: large pile-up complicates identification of the B decay vertex and flavor tagging

29.05.2012, Karlsruhe

Tracking system: VELO

29.05.2012, Karlsruhe

VELO performance

29.05.2012, Karlsruhe

Tracking system: TT and Magnet

MAX-PLANCK-INSTITUT FÜR KERNPHYSIK HEIDELBERG

• TT station:

- \rightarrow 4 layers of Si-Strip detectors in front of the magnet: ~150k r/o channels
- \rightarrow adds momentum information and helps to reconstruct the decay products of long-lived particles
- \rightarrow hit resolution ~ 62 µm

Magnet :

 \rightarrow essential component 10000 for track momentum 8000 measurements

LHCb

-0.1

6000

4000

2000

- \rightarrow its aperture defines the detector's acceptance
- \rightarrow bending power: $\int Bdl = 4.2 T \times m$

29.05.2012, Karlsruhe

Seminar at KIT on recent LHCb results by D.Volyanskyy

0.2 residual (mm),

0.1

-0.8

z (m)

10

Tracking system: T stations

MAX-PLANCK-INSTITUT FÜR KERNPHYSIK Heidelberg

• T1 – T3 stations:

- → each consists of 4 layers split into the Inner and Outer Trackers (IT/OT)
- \rightarrow IT: ~1.3% of the station sensitive area but 25% of all tracks pass through it
- → deflection of the tracks at T1-T3 stations is used to measure their momenta
- \rightarrow IT hit resolution: ~ 54 µm OT hit resolution: ~ 270 µm
- → good spatial hit resolution = accurate measurement of the track coordinates

29.05.2012, Karlsruhe

Track categories

MAX-PLANCK-INSTITUT FÜR KERNPHYSIK Heidelberg

- Long tracks: high-momentum tracks traversing the full LHCb tracking setup
 - \rightarrow measured with the highest possible precision
 - \rightarrow most useful for physics analysis
 - \rightarrow most numerous in the main LHCb acceptance
- VELO tracks: large-angle or backward tracks, used for the primary vertex reconstruction

- Upstream tracks: low-momentum tracks which are swept away by the magnetic field
- Downstream tracks: typically the decay products of long-lived particles (e.g. K_s^0 and Λ_{-}) which decay outside the VELO acceptance
- T tracks: products of secondary interactions

Long Tracks

MAX-PLANCK-INSTITUT FÜR KERNPHYSIK HEIDELBERG

29.05.2012, Karlsruhe

Tracking performance

MAX-PLANCK-INSTITUT FÜR KERNPHYSIK •• •• Heidelberg

LHCb particle identification

MAX-PLANCK-INSTITUT für Kernphysik Heidelberg

• RICH system:

- → efficient hadron ID over the wide momentum range
- \rightarrow unique at the LHC
- Scintillator Pad Detector (SPD) and Preshower (PS):
 - \rightarrow robust e/ γ and e/hadron separation
 - \rightarrow single layer scintillator tiles separated by Pb sheet 2.5 X₀ in depth

- ECAL:
 - \rightarrow e and γ energy measurement
 - \rightarrow widely used in the offline analysis
 - (e.g. $B^0 \rightarrow K^* \gamma$, $B^0_s \rightarrow \varphi \gamma$, $B^0 \rightarrow \pi^+ \pi^- \pi^0$)
 - \rightarrow trigger on electromagnetic decay channels
- HCAL:
 - \rightarrow energy measurement for hadrons
 - \rightarrow trigger on hadronic decay channels
- Muon stations: μ identification (multi-wire-proportional chambers) trigger on muonic decay channels

RICH system

MAX-PLANCK-INSTITUT FÜR KERNPHYSIK Heidelberg

29.05.2012, Karlsruhe

Calorimetry

MAX-PLANCK-INSTITUT FÜR KERNPHYSIK Heidelberg

 ECAL: Pb plates/scintillator tiles oriented perpendicularly to the beam axis
 → central 30 mrad cut-out for the beam pipe
 → 3 different transverse segmentations
 → depth: 25 X and 1.1λ/

→ depth: 25 X_o and 1.1 λ / → $\sigma(E)/E = \frac{10\%}{\sqrt{E}} + 1\%$

- HCAL: Fe plates/scintillator tiles arranged parallel to the beam axis
 - \rightarrow central 30 mrad cut-out for the beam pipe
 - \rightarrow 2 different transverse segmentations
 - \rightarrow depth: and 5.6 λ /
 - $\rightarrow \sigma(E)/E = \frac{69\%}{\sqrt{E}} + 9\%$ moderate but well enough for trigger purposes

29.05.2012, Karlsruhe

ECAL performance

MAX-PLANCK-INSTITUT FÜR KERNPHYSIK Heidelberg

29.05.2012, Karlsruhe

Trigger System

MAX-PLANCK-INSTITUT FÜR KERNPHYSIK Heidelberg

29.05.2012, Karlsruhe

Data taking in 2009–2011

=> Running challenges:

- Luminosities up to 3.9×10^{32} cm⁻² s⁻¹ were achieved in 2011
- LHCb design luminosity: 2.0×10^{32} cm⁻² s⁻¹
- Strong challenge for the trigger, offline reconstruction and data processing
- LHCb successfully copes with these extreme running conditions

X		
year	luminosity	energy (TeV)
2009	$6.8 \ \mu b^{-1}$	0.9
2010	0.3 nb ⁻¹	0.9
2010	37 pb ⁻¹	7
2011	0.1 pb ⁻¹	2.76
2011	1.1 fb ⁻¹	7

 \mathbf{n}

Max-Planck-Institut 🔪 für Kernphysik

HEIDELBERG

- Good quality of recorded data:
 - -> >95% of r/o channels are operational
- Data taking efficiency in 2011: 91%
 - -> DAQ issues: major source of inefficiency LHCb Average Instantaneous Lumi at 3.5 TeV in 2011

29.05.2012, Karlsruhe

Data taking in 2012

MAX-PLANCK-INSTITUT FÜR KERNPHYSIK Heidelberg

=> 2012 running conditions:

- \bullet pp collisions at a centre-of-mass energy of 8 TeV
- \rightarrow 15% increase of the $b \bar{b}$ cross-section w.r.t. 7 TeV
- luminosities up to 4×10^{32} cm⁻² s⁻¹
- average pile-up: ~2
- bunch spacing 50 ns
- 1.5 fb^{-1} is expected to be collected by the end of 2012

 Instead of horizontal separation of the beams, in 2012 they are tilted vertically at the LHCb interaction point:
 → vertical separation+horizontal compensation=tilted crossing plane

29.05.2012, Karlsruhe

Luminosity leveling

MAX-PLANCK-INSTITUT FÜR KERNPHYSIK Heidelberg

 As more proton bunches are injected, no way to moderate the instantaneous luminosity at LHCb and ALICE by limiting the number of colliding bunches

• Solution: <u>luminosity leveling</u> – reduces the area of interactions where the bunches pass through each other

ALICE/LHCb: lower luminosity

• Offset between the beams reduces the amount of interactions

• LHC continuously displaces both beams w.r.t. each other: instantaneous luminosity at a roughly constant value for the whole duration of a fill

Typical event

MAX-PLANCK-INSTITUT für Kernphysik Deidelberg

LHCb Event Display

29.05.2012, Karlsruhe

Part 2: Selection of recent results from LHCb

LHCb Physics Program

MAX-PLANCK-INSTITUT FÜR KERNPHYSIK Heidelberg

- => Rare B decays:
- Radiative, leptonic, electroweak, hadronic decays
- SM forbidden transitions

=> B decays to charmonium:

B mixing parameters
 CP violation measurements

→ B decays to open charm: CKM y angle from B → DK B decays to double charm

⇒ Charmless B decays: B → hh, B → VV

Semileptonic B decays:
 Form factors and search for CP violation in mixing

=> Charm physics:

- production and spectroscopy
- CP violation and mixing
- Rare charm decays

=> B hadrons and quarkonia:

 Production and spectroscopy of B hadrons and quarkonia

=> QCD, electroweak and exotica:

- Soft and hard QCD processes
- Particle production (incl. Electroweak bosons)
- PDF
- exotic long-lived particles

In this talk, recent results on:

- Rare decays: $B_s^0 \rightarrow \mu^+ \mu^-$, $B^0 \rightarrow K^* \mu^+ \mu^-$
- Bs mixing
- CP violation measurements
- Production W and Z bosons
- Energy Flow are presented

29.05.2012, Karlsruhe

$B^0_{d,s} \rightarrow \mu^+ \mu^- \text{Analysis (1)}$

2

 $\overline{\bigcirc}$

ex

hep-(

arXiv:1203.4493v2

• FCNC decays strongly suppressed in SM:

 $SM : BR(B_s^0 \to \mu^+ \mu^-) = (3.20 \pm 0.20) \times 10^{-9}$ $SM : BR(B_d^0 \to \mu^+ \mu^-) = (0.10 \pm 0.01) \times 10^{-9}$

- → can be significantly enhanced by New Physics (SUSY models with non-universal Higgs masses and models with leptoquarks)
- \rightarrow sensitive test of SM
- \rightarrow previous upper limits:

 $BR(B_s^0 \to \mu^+ \mu^-) < 1.4 \times 10^{-8} BR(B_d^0 \to \mu^+ \mu^-) < 3.2 \times 10^{-9}$

- Recent searches with 1fb⁻¹ @ 7 TeV
- Selection with MVA Boosted Decision Tree:
 - \rightarrow 6 variables: kinematic information
 - → retains 92% of the signal, while removing 80% of the residual background

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)

LHCb-PAPER-2012-007 CERN-PH-EP-2012-072 April 27, 2012

Strong constraints on the rare decays $B^0_s \to \mu^+\mu^-$ and $B^0 \to \mu^+\mu^-$

The LHCb collaboration

R. Aaij³⁸, C. Abellan Beteta^{33,n}, A. Adametz¹¹, B. Adeva³⁴, M. Adinolfi⁴³, C. Adrover⁶, A. Affolder⁴⁹, Z. Ajaltouni⁵, J. Albrecht³⁵, F. Alessia³⁵, M. Alexander⁴⁸, S. Ali³⁸, G. Alkhazov²⁷, P. Alvarez Cartelle³⁴, A.A. Alves Jr²², S. Amato², Y. Amhis³⁶, J. Anderson³⁷, R.B. Appleby⁵¹, O. Aquines Gutierrez¹⁰, F. Archilli^{18,35}, A. Artamonov³², M. Artuso^{53,35}, E. Aslanides⁶, G. Auriemma^{22,m}, S. Bachmann¹¹, J.J. Back⁴⁵, V. Balgura^{28,35}, W. Baldini¹⁶, R.J. Barlow⁵¹, C. Barschel³⁵, S. Barsuk⁷, W. Barter⁴⁴, A. Bates⁴⁸, C. Bauer¹⁰, Th. Bauer³⁸, A. Bay³⁶, J. Beddow⁴⁵, I. Bediaga¹, S. Belogurov²⁸, K. Belous⁵², I. Belyaev²⁸, E. Ben-Haim⁸, M. Benayoun⁶, G. Bencivenni¹⁸, S. Benson⁴⁷, J. Benton⁴³, R. Bernet³⁷, M.-O. Bettler¹⁷, M. van Beuzekom³⁸, A. Bien¹¹, S. Bifani¹², T. Bird⁵¹, A. Bizzeti^{17,h}, P.M. Bjørnstad⁵¹, T. Blake³⁵, F. Blanc³⁶, C. Blanks⁵⁰, J. Blouv¹¹, S. Blusk⁵³, A. Bobrov³¹, V. Bocci²², A. Bondar³¹, N. Bondar²⁷, W. Bonivento¹⁵, S. Borghi^{48,51}, A. Borgia⁵³, T.J.V. Bowcock⁴⁹, C. Bozzi¹⁶, T. Brambach⁹, J. van den Brand³⁹, J. Bressieux³⁶, D. Brett⁵¹, S. Cadedu¹⁵, O. Callot⁷, M. Calvi^{20,j}, M. Calvo Gomez^{33,n}, A. Camboni³⁷, P. Cardinale^{19,45}, A. Curboni^{14,51}, A. Carboni^{14,51}, C. Carson⁵⁰, K. Carvalho Akiba², G. Casse⁴⁹, M. Cattaneo³⁵, Ch. Cauet⁹, M. Charles⁵², Ph. Charpentier³⁵, N. Chiapolini³⁷, M. Chrzaszcz²³, K. Ciba³⁵, X. Cid Vidal³⁴, G. Ciezarek⁵⁰, P.E.L. Clarke⁴⁷, M. Clemenci³⁵, A. Contu¹⁵, J. Deond⁴³, M. Coombes⁴³, G. Corta³⁵, S. Courga⁶, E. Cogneras⁵, P. Collins⁵⁵, A. Cortei⁴⁷, J. Desid⁴⁵, J. De Bousi⁴⁵, J. De Bousi⁴⁵, J. De Bousi⁴⁵, J. De Bousi⁴⁵, J. De Buuno⁸, S. De Capua^{31,k}, M. De Cian³⁷, J.M. De Miranda¹, L. De Paula², P. De Simoue¹⁸, D. Decamp⁴, M. Deckenhoff⁹, H. Degaudenzi^{36,55}, L. Del Buono⁸, J.M. De Miranda¹, L. De Paula², P. De Simone¹⁸, D. Decamp⁴, M. Deckenhoff⁹, H. Degaudenzi^{36,35}, L. Del Buono⁸, D Diniz Batista¹. 45, A. Dovbnya⁴⁰ Probability 10⁻¹ chev²⁸, S. Eidelman³¹. LHCb ¹², D. Esperante Pereira³⁴, z Albor³⁴, M. Ferro-Luzzi³⁵, Frank³⁵, C. Frei³⁵, Preliminary Gao³, J-C. Garnier³⁵ ⁶, M. Gersabeck³⁵ utvin^{50,28,35}, A. Gomes², gés³³, G. Graziani¹⁷, T. Gys³⁵, C. Hadjivasiliou⁵³, ², J. Harrison⁵¹. ido Morata³⁴. BDT discriminant: - Huse⁴⁹, R.S. Huston¹² 10⁻² ¹¹, M. Jahjah Hussein⁵ ones⁴⁴, B. Jost³⁵, M. Kaballo⁹, Ketel³⁹, A. Keune³⁶ Korolev²⁹, A. Kozlinskiv³⁸ 10⁻³ cki³⁵, M. Kucharczyk^{20,23,35,j} Signal D. Lambert⁴⁷

0.6

0.7

BDT

0.5

Seminar at KIT on recent LHCb results by D.Volyanskyy

10

Background

0.3

0.4

0.2

 $BR < 4.5 \times 10^{-9} @ 95\% CL \rightarrow getting closer to SM value$

Status as of May 2012 at 95% CL:

experiment	Lint .	$BR(B_s^0 \to \mu^+ \mu^-)$	$BR(B_d^0 \rightarrow \mu^+ \mu$	⁻) <i>reference</i>
CMS	5 fb^{-1}	<7.7×10 ⁻⁹	<1.8×10 ⁻⁹	arXiv:1203.3976v1
LHCb	1 fb ⁻¹	<4.5×10 ⁻⁹	<1.0×10 ⁻⁹	arXiv:1203.4493v2

- LHCb with 5 times less data gets better results and sets world's best upper limits !
- LHCb results impose strong constraints on SUSY models
- With 2.5 fb⁻¹ (end of 2012) we should see SM signal at 3 sigma (if it exists...)

29.05.2012, Karlsruhe

CLs

0.8

0.6

0.4

0.2

$B_d^0 \rightarrow K^* \mu^+ \mu^-$ Analysis (1)

- b → s FCNC decay mediated by electroweak loop-diagrams
- → high sensitivity to New Physics: new particles may enter in loop diagrams significantly affecting
- Observables of interest:
- → A_{FB}: lepton forward-backward asymmetry of a muon in the rest frame of B
- \rightarrow F_L : fraction of the longitudinal polarization of the K* meson
- \rightarrow Differential BF
- \rightarrow all the variables are studied vs q²=M²($\mu\mu$)
- analysis performed with 1fb⁻¹ @ 7 TeV
- Selection with MVA Boosted Decision Tree
- \rightarrow rejection of J/ ψ and ψ (2S) resonances
- → kinematic + PID information

29.05.2012, Karlsruhe

Seminar at KIT on recent LHCb results by D.Volyanskyy

MAX-PLANCK-INSTITUT V für Kernphysik

Heidelberg

$B_d^0 \rightarrow K^* \mu^+ \mu^-$ Analysis (2)

MAX-PLANCK-INSTITUT Für Kernphysik Heidelberg

Prompt reaction

• Immediate feedback from theoreticians on latest LHCb results for these rare decays:

CERN-PH-TH/2012-120

${ m Supersymmetric\ constraints\ from\ } B_s o \mu^+\mu^- { m \ and} \ B o K^*\mu^+\mu^- { m \ observables}$

F. Mahmoudi^{1,2}* S. Neshatpour²[†] and J. Orloff²[‡]

¹ CERN Theory Division, Physics Department CH-1211 Geneva 23, Switzerland

² Clermont Université, Université Blaise Pascal, CNRS/IN2P3, LPC, BP 10448, 63000 Clermont-Ferrand, France

Abstract

We study the implications of the recent LHCb limit and results on $B_s \to \mu^+ \mu^$ and $B \to K^* \mu^+ \mu^-$ observables in the constrained SUSY scenarios. After discussing the Standard Model predictions and carefully estimating the theoretical errors, we show the constraining power of these observables in CMSSM and NUHM. The latest limit on BR $(B_s \to \mu^+ \mu^-)$, being very close to the SM prediction, constrains strongly the large tan β regime and we show that the various angular observables from $B \to K^* \mu^+ \mu^-$ decay can provide complementary information in particular for moderate tan β values.

• SUSY with large $\tan\beta$ is practically excluded

8 May 2012

arXiv:1205.1845v1 [hep-ph]

Seminar at KIT on recent LHCb results by D.Volyanskyy

MAX-PLANCK-INSTITUT FÜR KERNPHYSIK Heidelberg

CHECK Some first observations of rare decays

• Two excited Λ_b^0 baryons $\rightarrow arXiv: 1205.3452v1 \ [hep-ex] \ 15 \ May \ 2012$ $M_{\Lambda_b^{*0}(5912)} = 5911.95 \pm 0.12 \pm 0.03 \pm 0.66 \ MeV/c^2,$ $M_{\Lambda_b^{*0}(5920)} = 5919.76 \pm 0.07 \pm 0.02 \pm 0.66 \ MeV/c^2,$

- $B_c^+ \rightarrow J/\psi \pi^+ \pi^- \pi^+$ decay $\rightarrow arXiv: 1204.0079v1 [hep-ex] 31 Mar 2012$
- Cabibbo suppressed decays: $B_d^0 \rightarrow D^- K^+ \pi^+ \pi^- \quad B^- \rightarrow D^0 K^- \pi^+ \pi^ \rightarrow arXiv: 1201.4402v1 [hep-ex] 20 Jan 2012$ \rightarrow last one is sensitive to the CKM angle γ
- $B_s^0 \rightarrow K^* \overline{K}^*$ decay: $\rightarrow arXiv:1111.4183v3$ [hep-ex] 9 Feb 2012
- $B_s^0 \to D^0 K^*$ decay: $\to arXiv: 1110.3676v3 [hep-ex] 15 Nov 2011$
- $B_s^0 \rightarrow J/\psi f_0(980)$ decay: $\rightarrow arXiv: 1102.0206v2$ [hep-ex] 2 Mar 2011

29.05.2012, Karlsruhe

Seminar at KIT on recent LHCb results by D.Volyanskyy

Max-Planck-Institut > für Kernphysik

HEIDELBERG

B_s^0 mixing (1)

- One of the most interesting properties of neutral B mesons:
 - \rightarrow discovered in the B_d^0 sector by ARGUS in 1987
 - $\rightarrow B_s^0$ oscillations were firstly studied at Tevatron, B_d^0 sector was much better explored

• Important parameters:

 $\rightarrow \Delta M_q$ and $\Delta \Gamma_q - mass$ and decay width differences between the heavy and light B_q^0 eigenstates $\rightarrow \Delta M_q$ defines frequency of oscillations $\Delta M_q / \Gamma_q$ average number of oscillations before the decay $\rightarrow \Phi_q$ weak mixing phase of the $B_q^0 - \overline{B}_q^0$ oscillations $\phi_q = 2 \arg[V_{tq}^* V_{tb}]$

- $\to \phi_s$ is tiny in SM, directly related to the CKM angle χ ($\phi_s \approx -2\chi$) sensitivity to New Physics
- $\rightarrow \phi_s$ extraction via measurements of time-dependent CP-asymmetry in $b \rightarrow c \,\overline{c} \,s$ transition

Interference gives rise to ϕ_s

- => Latest LHCb results on Bs mixing:
- arXiv:1204.5675v3 [hep-ex] 23 May 2012: ϕ_s from $B_s^0 \to J/\psi \pi^+ \pi^-$ with 1 fb⁻¹
- LHCb-CONF-2012-002 5 March 2012: ϕ_s , Γ_s , $\Delta \Gamma_s$ from $B_s^0 \rightarrow J/\psi \phi$ with 1 fb⁻¹

29.05.2012, Karlsruhe

Max-Planck-Ins

B_s^0 mixing (2)

29.05.2012, Karlsruhe

Seminar at KIT on recent LHCb results by D.Volyanskyy

MAX-PLANCK-INSTITUT V für Kernphysik

HEIDELBERG

Selected CP violation results

Seminar at KIT on recent LHCb results by D.Volyanskyy

Max-Planck-Institut 🔪 für Kernphysik

HEIDELBERG

LHCb and Parton Distributions

- Ability to investigate low-p_τ region (<0.5 GeV/c) at large η(>4)
 - → the only one LHC experiment that can investigate this region of the phase space
- $\rightarrow\,$ great potential to study soft QCD physics
- LHCb, due to its rapidity coverage, explores particle production in an unique kinematic range:
 - \rightarrow probes of PDFs at very low and at high values of x and low-Q²
 - → measurements of the low-mass (up to 2.5 GeV) Drell-Yan cross-section are possible with LHCb – probe x values down to 1.5×10^{-6}

arXiv:0808.1847v1 [hep-ph] LHCb-CONF-2009-014

29.05.2012, Karlsruhe

Seminar at KIT on recent LHCb results by D.Volyanskyy

Max-Planck-Institut > für Kernphysik

Heidelberg

Electroweak results

CERN-PH-EP-2012-099 LHCb-PAPER-2012-008

April 5, 2012

29.05.2012, Karlsruhe

Seminar at KIT on recent LHCb results by D.Volyanskyy

36/48

LHCO EF Analysis: Physics Motivation

• Energy Flow (EF)

directly sensitive to the amount of parton radiation and multi-parton interactions (MPI):

 $EF = \frac{1}{N_{inter}} \frac{dE_{TOTAL}}{dn}$

- -> MPI predominant source of the underlying event (UE) activity
- -> MPI phenomena is still not well known
- -> forward EF measurements should allow to discriminate between different MPI models
- -> additional input to the determination of the parameters of the existing MPI models
- EF measurements are strongly needed for MC tuning:
 - -> most of the current models were tuned to describe SPS and Tevatron data at central rapidities
 - -> accurate theoretical description of the UE structure still remains to be a challenge

Forward EF has never been measured at a hadron collider in the pre-LHC era:
 -> CMS has recently made first measurements for 3.15<η<4.9

LHCb-CONF-2012-012

EF Analysis: Physics Motivation

Cosmic Rays and Extensive Air Showers

- EF measurements supposed to improve the existing constraints on ultra-high energy cosmic-ray models:
- → LHC provides first possibility to compare cosmic-ray showering models at E_{lab} of up to ~10¹⁷ eV
- First analysis where LHCb data compared with the CR models:

by Ralf Ulrich

Propagation

MAX-PLANCK-INSTITUT

FÜR KERNPHYSIK

HEIDELBERG

Extensive Air Shower

Atmosphere (≈27X_o, ≈11λ_{int}) Earth

Observational window for

Many Thanks to Colin Baus and Ralf Ulrich from KIT

astrophysics at most extreme energies, but

- No direct detection of cosmic rays
- Extensive Air Showers (EAS)
- Need to understand ground based EAS observables
- Very good EAS models required!

 \Rightarrow Interactions up to $\sqrt{s} \sim 500 \text{ TeV}$

29.05.2012, Karlsruhe

LHC

Seminar at KIT on recent LHCb results by D.Volyanskyy

Detection

MAX-PLANCK-INSTITUT FÜR KERNPHYSIK Heidelberg

Inclusive MB events:

- -> detector level : at least 1 long track in 1.9<η<4.9 with p>2 GeV/c + good quality additional cuts to suppress beam-related background and pile-up
- generator level: at least 1 charged stable generated particle in 1.9<η<4.9, no pile-up BXs no cut on E – correction of the measurements to the full energy flow
- Hard scattering events \rightarrow selected among inclusive MB ones
- -> detector level : at least 1 longtrack in $1.9 < \eta < 4.9$ with $p_T > 3$ GeV/c
- -> generator level: at least 1 charged stable particle in $1.9 < \eta < 4.9$ with $p_T > 3$ GeV/c
- Diffractive enriched events \rightarrow selected among inclusive MB ones
- -> detector level : no backward tracks reconstructed in $-3.5 < \eta < -1.5$
- -> generator level: no charged stable particles in $-3.5 < \eta < -1.5$
- Non-diffractive enriched events \rightarrow selected among inclusive MB ones
- -> detector level : at least 1 backward track in $-3.5 < \eta < -1.5$
- -> generator level: at least 1 charged stable particle in $-3.5 < \eta < -1.5$
- LHCb MC: ~70% of selected diffractive candidates at detector level are indeed the diffractive events ~90% of non-diffractive candidates are indeed non-diffractive events
- Purity gets much better at generator level

29.05.2012, Karlsruhe

Seminar at KIT on recent LHCb results by D.Volyanskyy

LRG over 2 units of η !

EF Analysis: Results (1)

=> total corrected EF vs PYTHIA-based generator level predictions:

-> PYTHIA-based models underestimate EF at large η

-> valuable input for MC tuning

29.05.2012, Karlsruhe

EF Analysis: Results (2)

=> total corrected EF vs PYTHIA-based generator level predictions:

-> PYTHIA8 describes the diffractive EF much better than all the other models do

-> non-diffractive and diffractive EF are underestimated by the PYTHIA-based models

29.05.2012, Karlsruhe

EF Analysis: Results (3)

=> total corrected EF vs <u>cosmic-ray model</u> predictions:

SYBILL gives the best description of the total inclusive minbias EF among all the models !
 QGSJETII-03 describes the hard scattering EF at large η better than all the other models

29.05.2012, Karlsruhe

EF Analysis: Results (4)

=> total corrected EF vs <u>cosmic-ray model</u> predictions:

SYBILL gives the best description of the total non-diffr. enriched EF among all the models !
 SYBILL description of the diffractive EF is competitive with the one provided by PYTHIA8

29.05.2012, Karlsruhe

Part 3: LHCb upgrade plans

Motivation

 LHCb can't now collect >1.5 fb⁻¹ per annum because of the maximum r/o rate of 1.1MHz

- Major Goals:
 - 1) 40MHz r/o \rightarrow 5 fb⁻¹ per annum
 - \rightarrow hardware to be replaced
 - 2) increase trigger efficiencies
 - → factor of 5 and >10 for muonic and hadronic channels, respectively
 - \rightarrow fully software based trigger system

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH (CERN)

CERN-LHCC-2011-001 29 March 2011 (v2)

Letter of Intent for the LHCb Upgrade

The LHCb Collaboration¹

Abstract

The primary goal of LHCb is to measure the effects of new particles or forces beyond the Standard Model. Results obtained from data collected in 2010 show that the detector is robust and functioning well. While LHCb will be able to measure a host of interesting channels in heavy flavour decays in the upcoming few years, a limit of about 1 fb⁻¹ of data per year cannot be overcome without upgrading the detector. The LHC machine does not face such a limitation. With the upgraded detector, read out at 40 MHz, a much more flexible software-based triggering strategy will allow a large increase not only in data rate, as the detector would collect 5 fb⁻¹ per year, but also the ability to increase trigger efficiencies especially in decays to hadronic final states. In addition, it will be possible to change triggers to explore different physics as LHC discoveries point us to the most interesting channels. Our physics scope extends beyond that of flavour. Possibilities for interesting discoveries exist over a whole variety of phenomena including searches for Majorana neutrinos, exotic Higgs decays and precision electroweak measurements. Here we describe the physics motivations and proposed detector changes for exploring new phenomena in proton-proton collisions near 14 TeV centre-of-mass energy.

Foreseen modifications

MAX-PLANCK-INSTITUT FÜR KERNPHYSIK Heidelberg

29.05.2012, Karlsruhe

Schedule

MAX-PLANCK-INSTITUT Für Kernphysik Heidelberg

29.05.2012, Karlsruhe

Summary

MAX-PLANCK-INSTITUT FÜR KERNPHYSIK Heidelberg

- LHCb detector achievements:
 - Excellent vertex resolutions
 - Great tracking performance
 - Robust particle identification
 - Selective and flexible trigger system

Great conditions to deliver high-quality physics results

Just do it :-)

...and LHCb does it indeed :

- 56 papers submitted to journals so far, a lot more in the pipeline.
- world's best measurements of many important physics parameters with rather moderate amount of data and manpower !!!
- Upgrade activities launched
- LHCb is much more than just a beauty experiment :-)

29.05.2012, Karlsruhe