

New results on heavy flavour production at LHCb

Zhenwei Yang Tsinghua University

On behalf of the LHCb collaboration

2019.01.29

CERN LHC seminar

Outline

Introduction

New results on heavy flavour production

- *b*-hadron production fractions at 13 TeV
- The mass and production rate of \mathcal{Z}_b^- baryons
- $\psi(2S)$ production at 13 TeV and 7 TeV

LHCb-PAPER-2018-050, in preparation

LHCb-PAPER-2018-047, arXiv:1901.07075 submitted to Phys.Rev.D

LHCb-PAPER-2018-049, in preparation

Prospects and summary

The LHCb experiment

The LHCb detector

JINST 3 (2008) S08005 Int. J. Mod. Phys. A 30 (2015) 1530022

Fully instrumented at forward coverage

The Physics of LHCb

Data taking (run1+run2)

Great thanks to the LHC!

- > A huge amount of $b\overline{b}$ and $c\overline{c}$ have been produced
 - ~ $10^{12} b \overline{b}$
 - ~ $10^{13} c\bar{c}$
- Many impressive results have been achieved

More than 9 fb⁻¹ accumulated in Run1+Run2

Integrated Recorded Luminosity (1/fb)

Pros of heavy flavour measurement at LHCb

2019/01/29

Physics motivation

- The theory of strong interactions, quantum chromodynamics (QCD), is the least understood part of the Standard Model
 - Well tested in the perturbative region
 - Nonperturbative behaviours remain mysterious
- Measurements of heavy flavour production and other properties can provide essential information to deeply understand QCD
 - Understanding of QCD is also important to improve sensitivity of New Physics searches

[S. Olsen et al, Rev. Mod. Phys. 90 (2018) 015003]

b-hadron fractions in *pp* collisions at 13 TeV: $f_s/(f_u + f_d)$ and $f_{\Lambda_b^0}/(f_u + f_d)$

LHCb-PAPER-2018-050 in preparation

b-hadron fragmentation fractions

- Knowledge of b-hadron fragmentation fractions is essential in many aspects
 - To allow for relating the $b\overline{b}$ production cross-section from pQCD to the observed b hadrons
 - To convert the observed \bar{B}^0_s or Λ^0_b production ratios at the LHC into absolute branching fractions
 - For example, Measurement of $\mathcal{B}(B_s^0 \to \mu^+ \mu^-)$
 - To characterise the signal (background) composition in inclusive (exclusive) b-hadron analyses
- > These fractions must be determined experimentally
 - They cannot be reliably predicted because they are dominated by longdistance strong interactions

Previous measurements

Phys. Rev. D 85 (2012) 032008 JHEP 04 (2013) 001 JHEP 08 (2014) 143

- > LHCb measured kinematic dependences of f_s/f_d and $f_{\Lambda_b^0}/f_d$ at 7 TeV using both semileptonic and hadronic decays
 - The dependence of f_s/f_d on the *b*-hadron p_T is not conclusive

• $f_{A_b^0}/f_d$ is observed to be strongly dependent on the *b*-hadron p_T

Analysis strategy at 13 TeV

- > Data sample: 1.67 fb⁻¹ collected in 2016
- > Inclusive semileptonic decays $H_b \rightarrow H_c \mu^- \bar{\nu}_{\mu} X$
- ➤ Theoretical basis: Semileptonic widths for all *b*-hadrons are almost equal ($\Gamma_{SL}(H_b) = \Gamma_{SL}$)
 [I. Bigi et al, JHEP 09 (2011) 012]
 - Differences predicted to be around 1% (heavy quark expansion)

Analysis strategy (cont.)

> Semileptonic branching fractions \mathcal{B}_{SL} for \overline{B}_s^0 and Λ_b^0 calculated with well measured lifetimes and \mathcal{B}_{SL} for \overline{B}^0 and B^-

•
$$\mathcal{B}_{\mathrm{SL}}(H_b) = \Gamma_{\mathrm{SL}}/\Gamma(H_b) = \Gamma_{\mathrm{SL}} \cdot \tau_{H_b}$$

 \succ With known $\mathcal{B}_{SL}(H_b)$, only the ratios of yields need to be measured

Particle	$ au~(\mathrm{ps})$	$\mathcal{B}_{ ext{SL}}$ (%)	Correction $(\%)$	$\mathcal{B}_{\mathrm{SL}}$ (%)
	measured	measured	5	used
$\overline{B}{}^{0}$	1.520 ± 0.004	10.30 ± 0.19		10.30 ± 0.19
B^{-}	1.638 ± 0.004	11.08 ± 0.20		11.08 ± 0.20
$\left\langle \overline{B}{}^{0}+B^{-}\right\rangle$		10.70 ± 0.19		10.70 ± 0.19
$\overline{B}{}^0_s$	1.526 ± 0.015		$-1.0{\pm}0.5$	10.24 ± 0.21
Λ_b^0	1.470 ± 0.010		$3.0{\pm}1.5$	10.24 ± 0.25

Ref. [5]: I. Bigi et al, JHEP 09 (2011) 012

Formula of the fragmentation ratio: $f_{s(A_h^0)}/(f_u + f_d)$

$$\frac{N_{\rm SL}^{\rm obs}(\bar{B}_{s}^{0})}{N_{\rm SL}^{\rm obs}(B)} = \frac{\sigma_{b\bar{b}}f_{s}}{\sigma_{b\bar{b}}(f_{u}+f_{d})} \frac{\mathcal{B}_{\rm SL}(\bar{B}_{s}^{0})}{\mathcal{B}_{\rm SL}(B)} \frac{\varepsilon(\bar{B}_{s}^{0})}{\varepsilon(B)} \qquad \text{Similar for } A$$

$$= \frac{f_{s}}{f_{u}+f_{d}} \frac{\Gamma_{\rm SL}(\bar{B}_{s}^{0})\tau_{\bar{B}_{s}^{0}}}{\Gamma_{\rm SL}(B)(\tau_{B}-\tau_{\bar{B}}^{0})/2} \frac{\varepsilon(\bar{B}_{s}^{0})}{\varepsilon(B)}$$

Consider the corrections and use $\mathcal{B}_{SL}(H_b) = \Gamma_{SL} \cdot \tau_{H_b}$

Formula of the fragmentation ratio: $f_{s(\Lambda_b^0)}/(f_u + f_d)$

Removal of prompt charmed hadrons

- Greatly suppressed by lifetime related requirements
 - χ^2 of charmed hadron flight distance and $\chi^2_{\rm IP}$ of final tracks (μ , p, K, π)
- > Remaining prompt H_c removed by requiring $\ln(IP_{H_c}/mm) > -3$
 - Prompt component reduced to below 0.1%, while signal loss is around 3%

Nonresonant contribution: $\overline{B}_{s}^{0} \rightarrow DK\mu^{-}\bar{\nu}_{\mu}X$

LHCb-PAPER-2018-050 in preparation

- > Signals for \overline{B}_{s}^{0} and background for $\overline{B}^{0}(B^{-})$
- > Extracted by 2D fits: $m(D^0K^{\pm})_C$ v.s. $\ln(\Delta\chi_V^2)$

 $m(D^0K^{\pm}) - m(D^0) + m(D^0)_{\text{PDG}}$

logarithm of the vertex χ^2 difference between $D\mu K$ and $D\mu$

Nonresonant contribution: $\Lambda_b^0 \rightarrow D^0 p \mu^- \bar{\nu}_\mu X$

LHCb-PAPER-2018-050 in preparation

- > Signals for Λ_b^0 and background for $\overline{B}^0(B^-)$
- \succ Extracted by 2D fits: $m(D^0p)_C$ v.s. $\ln(\Delta \chi_V^2)$

 $m(D^0p) - m(D^0) + m(D^0)_{PDG}$

logarithm of the vertex χ^2 difference between $D\mu p$ and $D\mu$

$p_{\rm T}$ dependence

 $\gg p_{\rm T}(H_b) = k p_{\rm T}(H_c \mu)$: correction factor $k = \langle p_{\rm T}^{\rm rec} \rangle / p_{\rm T}^{\rm true}$ from simulation LHCb 13 TeV LHCb 13 TeV Preliminary Preliminary 0.25 0.15 0.2 0.1 0.15E 0.1E 0.05 0.05E 0 10 15 20 20 10 15 25 25 $p_{\rm T}(B)$ [GeV] $p_{\tau}(H_b)$ [GeV] • $f_s/(f_u + f_d)$ slightly • $f_{\Lambda_b^0}/(f_u + f_d)$ strongly depends on $p_T(\Lambda_b)$ depends on $p_{\rm T}(B)$

2019/01/29

η dependence

LHCb-PAPER-2018-050 in preparation

 \succ No η dependence of the ratios is visible

Average fragmentation fractions

Preliminary results

$$\frac{f_s}{f_u + f_d} = 0.122 \pm 0.006$$

- Statistical and systematic uncertainties combined
- Systematic uncertainty dominates

Kinematic region:

$$4 < p_T(H_b) < 25 \text{ GeV}/c$$

 $2 < \eta < 5$

 $\frac{f_{A_b^0}}{f_u + f_d} = 0.259 \pm 0.018$

LHCb 7 TeV result:

$$\frac{f_s}{f_u + f_d} = 0.128 \pm 0.010$$

[LHCb, JHEP 04 (2013) 001]

Ξ_b^- production ratio

LHCb-PAPER-2018-047 arXiv:1901.07075, submitted to PRD

Introduction

- > The *b*-hadron fragmentation fractions (f_u , f_d , f_s and f_{baryon}) are available at the *Z* resonance and at $p\bar{p}$ collisions
- Complete measurements of b-hadron production fractions at the LHC do not exist yet
- To achieve this, measurements of other b baryons are needed PDG 2018

$$f_u + f_d + f_s + f_{\text{baryon}} = 1$$

 $f_{\text{baryon}} = f_{A_b^0} + f_{\Xi_b^0} + f_{\Xi_b^-} + f_{\Omega_b^-}$ $= f_{A_b^0} \left(1 + 2 \frac{f_{\Xi_b^-}}{f_{A_b^0}} + \frac{f_{\Omega_b^-}}{f_{A_b^0}} \right)$

b hadron	Fraction at $Z[\%]$	Fraction at $\overline{p}p$ [%]
B^+, B^0	41.2 ± 0.8	34.0 ± 2.1
B_s^0	8.8 ± 1.3	10.1 ± 1.5
b baryons	8.9 ± 1.2	21.8 ± 4.7

Measurement of $f_{\Xi_{h}^{0(-)}}/f_{\Lambda_{b}^{0}}$

➤ The best way is to measure $f_{\Xi_b^{0(-)}}/f_d$ using $\Xi_b^{0(-)} \to \Xi_c^{+(0)} \mu^- \bar{\nu}_{\mu} X$ decays • Limited knowledge of absolute BRs of Ξ_c^0 decays [Belle, arXiv:1811.09738]

- No absolute BRs of \mathcal{Z}_{c}^{+} decays available
 - Precision measurements should be feasible at Belle II

> Alternative way is to measure $f_{\Xi_b^-}/f_{\Lambda_h^0}$ using the SU(3) related decays

$$\Lambda_b^0 \to J/\psi \Lambda \text{ and } \Xi_b^- \to J/\psi \Xi^-$$

• SU(3) symmetry \rightarrow the partial width ratio: $\frac{\Gamma(\Xi_b^- \to J/\psi\Xi^-)}{\Gamma(\Lambda_b^0 \to J/\psi\Lambda)} = \frac{3}{2} \begin{bmatrix} M. \text{ Savage et al, NPB326 (1989) 15} \end{bmatrix}$ • Uncertainty around 30% • Uncertainty around 30%

Measurable

$$R \equiv \frac{f_{\Xi_b^-}}{f_{\Lambda_b^0}} \frac{\mathcal{B}(\Xi_b^- \to J/\psi \,\Xi^-)}{\mathcal{B}(\Lambda_b^0 \to J/\psi \,\Lambda)} = \frac{f_{\Xi_b^-}}{f_{\Lambda_b^0}} \frac{\Gamma(\Xi_b^- \to J/\psi \,\Xi^-)}{\Gamma(\Lambda_b^0 \to J/\psi \,\Lambda)} \frac{\tau_{\Xi_b^-}}{\tau_{\Lambda_b^0}} = \frac{N(\Xi_b^- \to J/\psi \,\Xi^-)}{N(\Lambda_b^0 \to J/\psi \,\Lambda)} \frac{\epsilon_{\Lambda_b^0}}{\epsilon_{\Xi_b^-}}$$

Known (theo. + exp.)

2019/01/29

Data sample and mass fits

LHCb-PAPER-2018-047 arXiv:1901.07075

- > Use Run1 (7&8 TeV) and 2016 (13 TeV) data
- $\succ \Xi^- \rightarrow \Lambda \pi^-$ decays either inside VELO or outside VELO
- Signal: sum of two Crystal-Ball functions Background: exponential

Results: Ξ_b^- mass

Simultaneous fit to mass distributions of six subsamples:

- $\Lambda_b^0 \rightarrow J/\psi \Lambda$: Run1 (7&8 TeV) and 2016 (13 TeV)
- $\mathcal{Z}_b^- \rightarrow J/\psi \mathcal{Z}^-(\rightarrow \Lambda \pi_L^-)$: Run1 (7&8 TeV) and 2016 (13 TeV)
- $\mathcal{E}_b^- \rightarrow J/\psi \mathcal{E}^-(\rightarrow \Lambda \pi_D^-)$: Run1 (7&8 TeV) and 2016 (13 TeV)
- > Mass difference $\delta m \equiv m(\Xi_b^-) m(\Lambda_b^0)$ and Ξ_b^- mass with systematic uncertainties taken into account

 $\delta m = 177.30 \pm 0.39 \pm 0.15 \,\mathrm{MeV}/c^2,$

 $m(\Xi_b^-) = 5796.70 \pm 0.39 \pm 0.15 \pm 0.17 \,\mathrm{MeV}/c^2$

The most precise determination of Ξ_b^- mass

Consistent with previous most precision result: $\delta m = 178.36 \pm 0.46 \pm 0.16$ MeV/ c^2 [LHCb, PRL113 (2014) 242002]

Results: Ξ_b^- production asymmetry

LHCb-PAPER-2018-047 arXiv:1901.07075

> Repeat the fit by splitting into baryon (\overline{z}_b^-) and antibaryon (\overline{z}_b^+)

$$A_{\text{prod}}(\Xi_{b}^{-}) - A_{\text{prod}}(\Lambda_{b}^{0}) = \alpha(\Xi_{b}^{-}) - \alpha(\Lambda_{b}^{0}) - A_{\text{det}}(\pi^{-})$$

$$Previous \text{ measurements}$$

$$A_{\text{prod}}(\Lambda_{b}^{0}) = (2.4 \pm 1.4 \pm 0.9)\%$$

$$LHCb, Phys.Lett. B774 (2017) 139$$

$$LHCb, Phys.Rev. D91 (2015) 054022$$

$$LHCb, Chin.Phys.C40 (2016) 011001$$

$$Previous \text{ measurements}$$

$$Raw yield$$

$$asymmetry from fits$$

$$Previous \text{ measurements}$$

$$Consistent with zero$$

$$LHCb, Phys.Rev.Lett. 117 (2016) 061803$$

$$LHCb, JHEP 08 (2018) 008$$

$$A_{\text{prod}}(\Xi_b^-) = (1.1 \pm 5.6 \pm 1.9)\% \ [\sqrt{s} = 7, 8 \text{ TeV}],$$

 $A_{\text{prod}}(\Xi_b^-) = (-3.9 \pm 4.9 \pm 2.5)\% \ [\sqrt{s} = 13 \text{ TeV}].$

Ξ_b^- production asymmetry consistent with zero

Results: Production ratio
$$f_{\Xi_b^-}/f_{A_b^0}$$
LHCb-PAPER-2018-047
arXiv:1901.07075 $R = \frac{f_{\Xi_b^-} \mathcal{B}(\Xi_b^- \to J/\psi \Xi^-)}{f_{A_b^0} \mathcal{B}(A_b^0 \to J/\psi A)} = \frac{f_{\Xi_b^-} \Gamma(\Xi_b^- \to J/\psi \Xi^-)}{\Gamma(A_b^0 \to J/\psi A)} \frac{\tau_{\Xi_b^-}}{\tau_{A_b^0}} = \frac{N(\Xi_b^- \to J/\psi \Xi^-)}{N(A_b^0 \to J/\psi A)} \frac{\epsilon_{A_b^0}}{\epsilon_{\Xi_b^-}}$ $R = (f_{A_b^0} \mathcal{B}(A_b^0 \to J/\psi A)) = \frac{f_{\Xi_b^-}}{f_{A_b^0}} \frac{\Gamma(\Xi_b^- \to J/\psi \Xi^-)}{\Gamma(A_b^0 \to J/\psi A)} \frac{\tau_{A_b^0}}{\tau_{A_b^0}} = \frac{N(\Xi_b^- \to J/\psi \Xi^-)}{N(A_b^0 \to J/\psi A)} \frac{\epsilon_{A_b^0}}{\epsilon_{\Xi_b^-}}$ **Known** $P = (10.8 \pm 0.9 \pm 0.8) \times 10^{-2} [\sqrt{s} = 7, 8 \text{ TeV}],$ $R = (10.8 \pm 0.9 \pm 0.8) \times 10^{-2} [\sqrt{s} = 13 \text{ TeV}],$ $R = (13.1 \pm 1.1 \pm 1.0) \times 10^{-2} [\sqrt{s} = 7, 8 \text{ TeV}],$ $\frac{f_{\Xi_b^-}}{f_{A_b^0}} = (6.7 \pm 0.5 \pm 0.5 \pm 2.0) \times 10^{-2} [\sqrt{s} = 13 \text{ TeV}],$ $\frac{f_{\Xi_b^-}}{f_{A_b^0}} = (8.2 \pm 0.7 \pm 0.6 \pm 2.4) \times 10^{-2} [\sqrt{s} = 13 \text{ TeV}],$ $\frac{f_{\Xi_b^-}}{f_{A_b^0}} = (6.5 \pm 2.0) \times 10^{-2} [\sqrt{s} = 13 \text{ TeV}],$ $\frac{f_{\Xi_b^-}}{f_{A_b^0}} = (6.5 \pm 2.0) \times 10^{-2} [\sqrt{s} = 13 \text{ TeV}].$ $\frac{f_{\Xi_b^-}}{f_{A_b^0}} = (6.5 \pm 2.0) \times 10^{-2} [\sqrt{s} = 13 \text{ TeV}].$ $\frac{f_{\Xi_b^-}}{f_{A_b^0}} = (6.5 \pm 2.0) \times 10^{-2} [\sqrt{s} = 13 \text{ TeV}].$ $\frac{f_{\Xi_b^-}}{f_{A_b^0}} = (6.5 \pm 2.0) \times 10^{-2} [\sqrt{s} = 13 \text{ TeV}].$ $\frac{f_{\Xi_b^-}}{f_{A_b^0}} = (6.5 \pm 2.0) \times 10^{-2} [\sqrt{s} = 13 \text{ TeV}].$ $\frac{f_{\Xi_b^-}}{f_{A_b^0}} = (5.4 \pm 2.0) \times 10^{-2} [\sqrt{s} = 13 \text{ TeV}].$ $\frac{f_{\Xi_b^-}}{f_{A_b^0}} = (6.5 \pm 2.0) \times 10^{-2} [\sqrt{s} = 13 \text{ TeV}].$ $\frac{f_{\Xi_b^-}}{f_{A_b^0}} = (5.4 \pm 2.0) \times 10^{-2} [\sqrt{s} = 13 \text{ TeV}].$ $\frac{f_{\Xi_b^-}}{f_{A_b^0}} = (6.5 \pm 2.0) \times 10^{-2} [\sqrt{s} = 13 \text{ TeV}].$ $\frac{f_{\Xi_b^-}}{f_{A_b^0}} = (5.4 \pm 2.0) \times 10^{-2} [\sqrt{s} = 13 \text{ TeV}].$ $\frac{f_{\Xi_b^-}}{f_{A_b^0}} = (5$

$\psi(2S)$ production cross-sections at 7 and 13 TeV

New

LHCb-PAPER-2018-049 in preparation

Introduction

- Study of heavy quarkonium production at hadron colliders provides important test to QCD models
 - Many models (NRQCD, CSM, COM, $k_{\rm T}$ factorization, FONLL, et al) available
 - Many measurements of heavy quarkonia performed at Tevatron and the LHC
- > Previous $\psi(2S)$ measurement in pp collisions at 7 TeV

Zhenwei Yang, Center for High Energy Physics, Tsinghua University

Separation of prompt and non-prompt $\psi(2S)$

- \succ A fraction of $\psi(2S)$ comes from b-hadron decays
 - : direct (**negligible feed-down contribution for** $\psi(2S)$) Prompt
 - Non-prompt: from b-hadron decays (i.e. $\psi(2S)$ from b)
- Prompt and non-prompt separated by pseudo decay time in longitudinal or transverse direction

Data sample and cross-section determination

 \geq 275 pb⁻¹ at 13 TeV (2015) and 614 pb⁻¹ at 7 TeV (2011)

- Previous measurement at 7 TeV: 36 pb⁻¹ (2010)
- \succ ψ(2*S*) → μ⁺μ⁻ used owing to high efficiencies
- > Cross-section determined in each (p_T, y) bin

Signal yields

LHCb-PAPER-2018-049 in preparation

> 2D fits to the m(µ⁺µ[−]) and t_z distributions in each (p_T, y) bin →N_p(p_T, y): Signal yields of prompt ψ(2S) N_b(p_T, y): Signal yields of ψ(2S) from b

Results: Integrated cross-sections

Preliminary:

 σ (prompt $\psi(2S)$, 13 TeV) = 1.430 \pm 0.005 (stat) \pm 0.099 (syst) μ b, $\sigma(\psi(2S)$ -from-b, 13 TeV) = 0.426 \pm 0.002 (stat) \pm 0.030 (syst) μ b.

> Kinematic region: $2 < p_T < 20 \text{ GeV}/c \text{ and } 2.0 < y < 4.5$

 σ (prompt $\psi(2S)$, 7 TeV) = 0.471 ± 0.001 (stat) ± 0.025 (syst) µb, $\sigma(\psi(2S)$ -from-b, 7 TeV) = 0.126 ± 0.001 (stat) ± 0.008 (syst) µb.

> Kinematic region: $3.5 < p_{\rm T} < 14 \text{ GeV}/c \text{ and } 2.0 < y < 4.5$

(due to tighter trigger selection)

in preparation $d\sigma/dp_{T} [nb/(GeV/c)]$ $d\sigma/dp_{T} [nb/(GeV/c)]$ Prompt ψ (2S) - Prompt ψ (2S) Prompt results NRQCD NRQCD 10^{2} compared with Preliminary Preliminary **13 TeV** 13 Te NRQCD from **b** prompt > Non-prompt results LHCb $\sqrt{s} = 7$ TeV (2011) LHCb $\sqrt{s} = 13 \text{ TeV} (2015)$ 275 pb⁻¹ 2.0 < v < 4.5614 pb⁻¹ 2.0 < v < 4.5compared with 10^{-1} 10 15 $p_{\rm T}$ of $\psi(2S)$ [GeV/c] FONLL p_{τ} of $\psi(2S)$ [GeV/c] $d\sigma/dp_{T}$ [nb/(GeV/c)] $d\sigma/dp_{T}$ [nb/(GeV/c)] 7 TeV ψ (2S)-from-b $- \psi$ (2S)-from-b Good agreement 7 TeV FONLL FONLL prompt from *b* for high $p_{\rm T}$ Preliminary Preliminary NRQCD: [H.-S. Shao et al, JHEP 05 (2015) 103] FONLL: LHCb $\sqrt{s} = 7$ TeV (2011) LHCb $\sqrt{s} = 13$ TeV (2015) [M. Cacciari et al, JHEP 05 (1998) 007] 275 pb⁻¹ 2.0 < v < 4.5 614 pb^{-1} 2.0 < v < 4.5M. Cacciari et al, JHEP 10 (2012) 137] 10^{-1} 10 15 10 [M. Cacciari et al, EPJC75 (2015) 610] $p_{\rm T}$ of $\psi(2S)$ [GeV/c] $p_{\rm T}$ of $\psi(2S)$ [GeV/c] 2019/01/29 Zhenwei Yang, Center for High Energy Physics, Tsinghua University 37

LHCb-PAPER-2018-049

Results: cross-section v.s. $p_{\rm T}$

2019/01/29

³⁹

Prospects

LHCb Upgrade (2019-2020)

[<u>LHCB-TDR-017</u>]

CERN-LHCC-2012-007

> Increase luminosity to $2 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$

- 5 times larger than current maximum instantaneous luminosity
- All sub-detectors read out at 40 MHz for a full software trigger
 - Record with 10 GB/s
- All subdetector apart from muon and calorimeter systems will be fully replaced

Scintillating Fibre (SciFi) tracker installation

Scintillating Fibre (SciFi) tracker installation

2019/01/29

Expected measurements

- A much larger sample of b- and c-hadrons would be collected after LS2 with the Upgrade
- More precision measurements for SM tests and NP searches with heavy flavour, CKM, CPV, RD, spectroscopy, et al
- More heavy flavour production measurements could be performed or improved, e.g.,
 - Measurement of $f_{\Omega_b^-}/f_{\Lambda_b^0}$

$$f_u + f_d + f_s + f_{\text{baryon}} = 1$$

- Double heavy flavour production
 - $\Upsilon(nS) + \Upsilon(nS)$

$$f_{\text{baryon}} = f_{\Lambda_b^0} + f_{\Xi_b^0} + f_{\Xi_b^-} + f_{\Omega_b^-}$$
$$= f_{\Lambda_b^0} \left(1 + 2 \frac{f_{\Xi_b^-}}{f_{\Lambda_b^0}} + \frac{f_{\Omega_b^-}}{f_{\Lambda_b^0}} \right)$$

LHCb Upgrade 2

Upgrade 2 proposed to take full profit of HL-LHC

- $\mathcal{L} = 1 2 \times 10^{34} \text{ cm}^{-2} \text{ s}^{-1}$, 10 times larger than Upgrade 1
- Aiming at 300 fb⁻¹ after Run5

Consolidate in LS3
 Major upgrade in LS4⁴

EOI submitted in 2017 (CERN-LHCC-2017-003)
 Physics document submitted in 2018 (arXiv:1808.08865)

Opportunities in flavour physics, and beyond, in the HL-LHC era

Summary

- LHCb has emphatically demonstrated its ability to perform important and unique measurements in various aspects
- New results of heavy flavour production are shown
 - b-hadron production fractions at 13 TeV
 - The mass and production rate of \mathcal{Z}_b^- baryons
 - $\psi(2S)$ production at 13 TeV and 7 TeV
- LHCb Upgrade I detector will be installed during LS2
 - Full software trigger at event rate ~30 MHz
 - Real time event reconstruction
 - Expect 23 $\rm fb^{-1}$ by 2025 and 50 $\rm fb^{-1}$ by 2029
- LHCb Upgrade II aiming at 300 fb⁻¹ with fully new detector to deepen our understanding of heavy flavour physics

2019/01/29

Backup slides

Track types for the LHCb Run I and II

How to increase the LHCb statistics significantly?

> LHCb up to LS2 (2018)

- Running at levelled luminosity of $\sim 4\times 10^{32}~cm^{-2}s^{-1},$ pile-up~1
- First level hardware trigger running at event rate ~1 MHz
- Record ~12 kHz (0.6 GB/s)

> LHCb Upgrade I (2021-)

- Increase luminosity to a levelled $2 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$, pile-up~5
- Run fully flexible and efficient software trigger up to 40 MHz
- Record with 10 GB/s

The most severe bottlenecks:

- Hardware trigger limited to ~ 1 MHz
- Tracking reconstruction

The LHCb Upgrade I detector

A complete new detector

• All sub-detectors read out at 40 MHz for a fully software trigger

Tracking system

- + VELO: Silicon strip $\rightarrow 55 \times 55 \ \mu m^2$ PIXEL
- TT \rightarrow UT: Silicon strip \rightarrow Silicon microstrip
- T1-T3→SciFi: Straw + silicon microstrip
 → Scintillating Fibre Tracker

PID system

- RICH: HPD → MaPMT improved optics + mechanics
- ECAL/HCAL: remains the same ECAL inner modules replaced in LS3
- Muon: increased granularity

Plan of the LHC(b) upgrade

- ✓ Demonstrated feasibility of high precision flavour physics at hadron colliders
- Find/rule out large sources of NP at the TeV scale
- ✓ Increase trigger efficiency
- \succ Aim at experimental sensitivities comparable to theoretical uncertainties

LHCb Upgrade II $\rightarrow \geq 300 \text{ fb}^{-1}$

- ✓ Take full profit of HL-LHC
- Physics document has been submitted to LHCC arXiv:1808.08865

Corrected yields of $B \rightarrow D\mu^-$

$$n_{\rm corr}(B \to D^0 \mu^-) = \frac{1}{\mathcal{B}(D^0 \to K^- \pi^+)\epsilon(B \to D^0)} \times \left[n(D^0 \mu^-) - n(D^0 K^+ \mu^-) \frac{\epsilon(\overline{B}^0_s \to D^0)}{\epsilon(\overline{B}^0_s \to D^0 K^+)} - n(D^0 p \mu^-) \frac{\epsilon(\Lambda^0_b \to D^0)}{\epsilon(\Lambda^0_b \to D^0 p)} \right]$$

$$n_{\rm corr}(B \to D^+ \mu^-) = \frac{1}{\epsilon(B \to D^+)} \left[\frac{n(D^+ \mu^-)}{\mathcal{B}(D^+ \to K^- \pi^+ \pi^+)} - \frac{n(D^0 K^+ \mu^-)}{\mathcal{B}(D^0 \to K^- \pi^+)} \frac{\epsilon(\overline{B}_s^0 \to D^+)}{\epsilon(\overline{B}_s^0 \to D^0 K^+)} - \frac{n(D^0 p \mu^-)}{\mathcal{B}(D^0 \to K^- \pi^+)} \frac{\epsilon(A_b^0 \to D^+)}{\epsilon(A_b^0 \to D^0 p)} \right].$$

Corrected yields of
$$\overline{B}_{s}^{0} \to D\mu^{-}(K^{+})$$
 and $\Lambda_{b}^{0} \to D\mu^{-}$
 $n_{corr}(\overline{B}_{s}^{0} \to D_{s}^{+}\mu^{-}) = \frac{n(D_{s}^{+}\mu^{-})}{\mathcal{B}(D_{s}^{+} \to KK\pi)\epsilon(\overline{B}_{s}^{0} \to D_{s}^{+}\mu^{-})}$
 $-N(\overline{B}^{0} + B^{-})\mathcal{B}(B \to D_{s}^{+}K)\frac{\epsilon(\overline{B} \to D_{s}^{+}K\mu^{-})}{\epsilon(\overline{B}_{s}^{0} \to D_{s}^{+}\mu^{-})}$
 $n_{corr}(\overline{B}_{s}^{0} \to D^{0}K^{+}\mu^{-}) = 2\frac{n(D^{0}K\mu^{-})}{\mathcal{B}(D^{0} \to K\pi)\epsilon(\overline{B}_{s}^{0} \to D^{0}K\mu^{-})}$

$$n_{\rm corr}(\Lambda_b^0 \to D\mu^-) = \frac{n(\Lambda_c^+\mu^-)}{\mathcal{B}(\Lambda_c^+ \to pK^-\pi^+)\epsilon(\Lambda_b^0 \to \Lambda_c^+)} + 2\frac{n(D^0p\mu^-)}{\mathcal{B}(D^0 \to K^-\pi^+)\epsilon(\Lambda_b^0 \to D^0p)}$$

2019/01/29

BRs of charmed hadron decays

Signal yields 100000

200000 LHCb 13 TeV 200000 (a)

(a)

 D^0

Signal: two Gaussians

Background: linear

 \succ Yields obtained in bins of $(p_{\rm T},\eta)$

Cross-feed background with misidentified particles evaluated in (p_T, η) bins

2019/01/29

Zhenwei Yang, Center for High Energy Physics, Tsinghua University

Signal yields of charmed hadrons H_c

-500000

LHCb-PAPER-2018-050 in preparation

Preliminary

200000 180000 160000

16000

12000

LHCb 13 TeV

(b)

Preliminary

A systematic check: f_+/f_0

> Measure the ratio of $D^0 \mu^- \bar{\nu}_{\mu} X$ to $D^+ \mu^- \bar{\nu}_{\mu} X$: f_+/f_0

> Theoretical prediction

 $f_+ / f_0 = 0.387 \pm 0.012 \pm 0.026$

[M. Rudolph, Int.J.Mod.Phys. A33 (2018) 1850176]

Measured result: Preliminary

 $f_+/f_0 = 0.359 \pm 0.006 \pm 0.009$

No dependence of $p_{\rm T}$ and η is observed Consistent with theoretical prediction

Systematic of *b*-hadron production fraction

Preliminary

LHCb-PAPER-2018-050 in preparation

Source	Value (%)		
	$f_s/(f_u+f_d)$	$f_{\Lambda_b^0}/(f_u+f_d)$	f_{+}/f_{0}
Simulation	1.7	2.4	_
Backgrounds	0.9	0.3	—
Cross-feeds	1.2	0.4	0.2
$\mathcal{B}(D^0 \to K^- \pi^+)$	1.0	1.0	1.3
$\mathcal{B}(D^+ \to K^+ \pi^- \pi^-)$	0.6	0.6	1.8
$\mathcal{B}(D_s^+ \to K^+ K^- \pi^+)$	3.3	—	_
$\mathcal{B}(\Lambda_c^+ \to pK^+\pi^-)$		5.3	—
Measured lifetime ratio	1.2	0.7	—
Γ_{sl} correction	0.5	1.5	—
Total	4.3	6.1	2.2

Systematic of \mathcal{Z}_b^- production ratio

Source	Value $(\%)$
$\Lambda_b^0, \Xi_b^- \text{polarization}$	3.0
Signal and background shape	2.0
Ξ_b^- production spectra	3.0
π^- tracking efficiency	4.5
Ξ^- mass resolution & non-resonant $\Lambda\pi^-$	3.0
Ξ^- selections	1.4
Ξ_b^- lifetime	0.5
Simulated sample sizes	2.0
Total	7.6