S. Stone May 2, 2014

1

How technological innovations could influence the physics potential of **b** physics at hadron colliders

Reasons for Physics Beyond the Standard Model

Dark Matter

Gravitational lensing

- Dark Energy: Cosmological constant
- Hierarchy Problem: Divergent quantum corrections to go from Electroweak scale ~100 GeV to Planck scale of Energy ~10¹⁹ GeV without "fine tuning" quantum corrections
- All of the above may only be related to Gravity

Other reasons for NP

- Flavor problem: Why 3 replications of quarks & leptons?
- Baryogenesis: The amount of CP Violation observed thus far in the quark sector is too small: (n_B-n_B)/n_γ =~10⁻²⁰ but ~6x10⁻¹⁰ is needed. Thus New Physics must exist to generate needed CP Violation
- To explain the values of CKM couplings, V_{ij}, (both neutrino & quark)
- To explain the masses of fundamental objects. Are they related to the V_{ii}'s?

Why these values? Are the two related? Are they related to masses?

Fermilab Academic Lectures, May, 2014

Seeking New Physics

- Flavor Physics as a tool for NP discovery
 - While measurements of CKM elements (fundamental constants) are fun, the main purpose of HFP is to find and/or define the properties of physics beyond the SM
 - FP probes large mass scales via virtual quantum loops. An example, of the importance of such loops is the Lamb shift in atomic hydrogen
 - A small difference in energy between $2S_{1/2} \& 2P_{1/2}$ that should be of equal energy at lowest order

- At PEP many interesting measurements, a few:
 - First evidence for the F* meson (now D_s*) only 1 year after CLEO found the F
 - $\hfill\Box$ $\tau^{\scriptscriptstyle -}$ lepton studies, including branching fractions
 - Inclusive particle production in e⁺e⁻ collisions, possible because of particle ID provided
 - Test of models for quark and gluon fragmentation
 - Total hadronic cross-section in 2γ collisions
 - □ $f_1(1285)$ formation in photon photon fusion reactions ⇒ $f_1(1285)$ is spin-1. Still an interesting state

Flavor experiments at hadron colliders

- In the past: CDF & D0 (not designed for flavor)
- Now & foreseeable future: LHCb & some from CMS & ATLAS, both also not designed for flavor, but have capabilities especially on final states containing µ⁺µ⁻ & have 10x the LHCb ∫ ∠
- Triggering on b & c decays is a key issue
 - LHCb is >90% for muon final states & ~50% for pure hadronic decays
 - CMS & ATLAS only use dimuons & are less efficient
- Backgrounds: at e⁺e⁻ have only $B\overline{B}$, σ_B/σ_{tot} ~1/4, hadron colliders rely on detached b decay vertex

Nygren Symposium, May 2, 2014

Detector Geometry Complementary to ATLAS & CMS Much less expensive

The Forward Direction at the LHC

- The primary pp collision produces a pair of b̄b quarks. They then form hadrons. In the forward region at LHC the b̄b production σ is large
- The hadrons containing the b & b quarks are both likely to be in the acceptance. Essential for knowing if a neutral B meson started out as a B⁰ or B⁰, determined by "flavor tagging"
- At £=2x10³²/cm²-s, we get ~6x10¹¹ B hadrons in 10⁷ sec in detector

LHCb detector ~ fully installed and commissioned \rightarrow walk through the detector using the example of a $B_s \rightarrow D_s K$ decay

B-Vertex Measurement

Momentum and Mass measurement

Hadron Identification

SUOS SCIENTA CONTRES SCIENTA CORONAT

Calorimetry and L0 trigger

Muon identification and L0 trigger

Triggering

Trigger is crucial as $\sigma_{b\bar{b}}$ is less than 1% of total inelastic cross section and B decays of interest typically have *B* ranching ratios of <10⁻⁵

Hardware level (L0) Search for high- p_{τ} μ , e, γ and hadron candidates

Software level (High Level Trigger, HLT) Farm with Ø(29000) multi-core processors) Very flexible algorithms, writes ~5 kHz to storage

This is the bottleneck

Detector Performance

- Detector works better than expected
- Run at 4x10³² cm⁻²/s instead of 2x10³², with fewer bunches in the machine which is more difficult ~<1.5> interactions/crossing
- Detector efficiency >95% for all systems
- Problems: Vertex resolution slightly worse, flavor tagging somewhat poorer
- Luminosity is leveled small changes of L with time; beams are brought closer together when currents decrease

A few results

Many NP models possible, not just Super-Sym

Top Down Analyses

Here we pick models and work out their consequences in many modes. Ex. (circa 2010):

Nygren Symposium, May 2, 2014

Evidence for $B_s \rightarrow \mu^+ \mu^-$

Nygren Symposium, May 2, 2014

24

Neutral Meson Mixing

- Neutral mesons can transform into their anti-particles via 2nd order weak interactions
- Short distance transition rate depends on

New particles possible in loop

mass of intermediate *q_i*, the heavier the better, favors s & b since t is allowed, while for c, b is the heaviest

CPV measurements

- CPV measure: $a[f(t)] = \frac{\Gamma(\overline{M} \to f) \Gamma(M \to f)}{\Gamma(\overline{M} \to f) + \Gamma(M \to f)}$
 - □ Angle probed depends on M, i.e. B^0 , B_s , D^0 ...& f
 - □ For $B^0 \rightarrow J/\psi K_s$, measure angle β , which is not predicted
 - For $B_s \rightarrow J/\psi f_0(980)$, $J/\psi \phi$, measure angle ϕ_s predicted from Other measurements to be small in the SM = -0.036 rad

- Small CPV expected, good place for NP to appear
- B_s→J/ψφ is not a CP eigenstate, as it's a vectorvector final state, so must do an angular analysis to separate the CP+ and CP- components

$φ_s$ results from J/ψφ

Combining LHCb
 J/ψφ & J/ψπ⁺π⁻ results:

$$\phi_s = 0.01 \pm 0.07 \pm 0.01 \text{ rad} \Gamma_s = 0.661 \pm 0.004 \pm 0.006 \text{ ps}^{-1} \Delta\Gamma_s = 0.106 \pm 0.011 \pm 0.007 \text{ ps}^{-1}$$

Already excluded ranges from box diagrams

$$\Box \ \mathcal{L}_{eff} = \mathcal{L}_{SM} + \frac{C_i}{\Lambda^2} O_i, \text{ take } c_i \sim 1$$

Ways out

- 1. New particles have large masses >>1 TeV
- 2. New particles have degenerate masses
- 3. Mixing angles in new sector are small, same as in SM (MFV)
- 4. The above already implies strong constrains on NP

Nygren Symposium, May

See: Isidori, Nir & Perez arXiv:1002.0900; Neubert EPS 2011 talk

LHCb Upgrade

- Goals: run at \mathcal{L} up to 2x10³³ cm/s with double efficiency on B→hadrons (x10)
- Move to an all software trigger with higher output ~50 kHz
- Higher density tracking elements
 - New pixel VELO
 - New Si strip TT called UT (US responsibility)
 - New Outer Tracker made of scintillating fibers
 - RICH switching to MAPMT's
- Approved by LHCC

Post upgrade:

The Torch

Possible additional improvements

What follows is only my speculations

Remove 250 µm thick RF foil, separating beam vacuum from VELO vacuum & replace with wires to absorb image charge from the beam. Would improve vertex resolution significantly

- LHCb could do more with an excellent E&M calorimeter
- Although final states such as B→K*γ have been done by LHCb, the efficiencies are relatively low & the resolution relatively poor
- π^0 's are more difficult
- PbWO₄ would be great, but it would cost as much as CMS. Note ½ of the solid angle could be covered for ¼ of the cost. Could also use Noble liquids, Argon, Xenon?

Timing photons

- H. Fritsch et al., Large area picosecond timing
 See <u>http://psec.uchicago.edu</u>
- In principle, can tell origin of photon by measuring the difference of time between γ's & pions. Could be enormously useful to tell if a γ came from a particular detached B decay vertex. For 1 ps, decay length is known to 0.1 mm, where average B decay length is ~10 mm
- Also useful for low momentum charged particle ID.

How it works

Requires large-area, gain > 10^7 , low noise, low-power, long life, $\sigma(t) < 10$ psec, $\sigma(x) < 1$ mm, and low large-area system cost Realized that an MCP-PMT has all these but large-area, low-cost: (since intrinsic time and space scales are set by the pore sizes- 2-20 μ)

Test results

- Already achieved 5 ps timing on 8"x8" area
- With 5 ps, have 0.5 mm resolution on γ origin, already beginning to be useful to distinguish among associated primary vertices, but really would like 1 ps ⇒ 0.1 mm resolution good enough to tell if its from a detached B decay

- We often want to detect B decays with a missing neutrino, such as $B \rightarrow D^{(*)}\mu^{-}\nu$ for $|V_{cb}|$ or $\Lambda_b \rightarrow p\mu^{-}\nu$ for $|V_{ub}|$
- Also look for new scalar fields such as inflatons, Berukov & Gorbunov prediction: "Light inflaton Hunter's Guide" (arXiv:0912.0390)

$$\begin{aligned} \mathcal{B}(\overline{B} \to \chi X_s) &\simeq 0.3 \frac{|V_{ts} V_{tb}^*|^2}{|V_{cb}|^2} \left(\frac{m_t}{M_W}\right)^4 \left(1 - \frac{m_\chi^2}{m_b^2}\right)^2 \theta^2 \\ &\stackrel{\text{K or K}^*}{\simeq} 10^{-6} \cdot \left(1 - \frac{m_\chi^2}{m_b^2}\right)^2 \left(\frac{\beta}{\beta_0}\right) \left(\frac{300 \text{ MeV}}{m_\chi}\right)^2, \end{aligned}$$

Here we don't detect the χ

B-factories vs LHCb

- B factories can fully reconstruct the B and then measure the B decay even with a missing particle, but the efficiency is only few x 10⁻³.
- This works because the p of the B is -p of the B. Signal appears as a peak in:

$$m_x^2 = (E_B - E_X)^2 - (\overrightarrow{p_B} - \overrightarrow{p_X})^2$$

An alternative technique has been used, e.g., in D⁰ decay: Measure the D⁰ direction from production to the primary vertex, but then we are missing the $|\mathbf{p}_{D^0}|$. Get an extra constraint from D^{*+} $\rightarrow \pi^+D^0$ decay, works because of large rate and narrow D^{*+} width, which is 0.1 MeV, so observed width depends on detector resolution

Nygren Symposium, May 2, 2014

How can LHCb do this?

- B**→π⁺B, this doesn't work because B**/B is ~15%, unlike D*+/D ~100%, & the widths are ~25 MeV & ~130 MeV
- How about $\Sigma_b^+ \rightarrow \pi^+ \Lambda_b^0$? (See Stone & Zhang arXiv:1402.4205)
 - Should be a large rate. Expect Σ_b^+ , & Σ_b^- production to be about the same size as Λ_b^0 (bud, versus buu & bdd)
 - There has even been an observation of the decay by CDF, but not a measurement of the relative rate, which appears to be quite low

CDF results: Only published measurement

SUSE UNIVERS

Augmenting the tracking

- A useful technique, can be improved by detecting low p tracks, only ~60 MeV Q for these decays about the same as for D*-D
- Examples of LHCb tracks
- Upstream tracks typically have ∆p/p~15%, so not useful for most physics. So put detectors in the magnet

Conclusions

- Flavor physics offers unique searches for high mass New Physics
- Hadron colliders provide enormous samples of b & c decays
- Several improvements are possible that could vastly improve the prospects of finding such new phenomena
- Good luck to Dave!

- Define Heavy Flavor Physics
 - Flavor Physics: Study of interactions that differ among flavors: (quark flavors are u, d, c, s, b, t)
 - Heavy: Not SM neutrino's or u or d quarks, maybe s quarks, concentrate here on b quarks (some c), t too heavy

Zuminosity Leveling

 ∠uminosity is maintained as at a constant value of ~4x10³²/cm·s by displacing beams transversely
 Integral ∠ is 1/fb in 2011, collected 2/fb more in 2012

• By definition
$$a_{sl} = \frac{\Gamma(\overline{M} \to f) - \Gamma(M \to \overline{f})}{\Gamma(\overline{M} \to f) + \Gamma(M \to \overline{f})}$$

at t=0 \overline{M} \rightarrow f is zero as is M \rightarrow f

• Here f is by construction flavor specific, $f \neq \overline{f}$

- Can measure eg. $\overline{B}_{s} \rightarrow D_{s}^{+}\mu^{-}\nu$, versus $B_{s} \rightarrow D_{s}^{-}\mu^{+}\nu$,
- Or can consider that muons from two B decays can be like-sign when one mixes and the other decays, so look at μ⁺μ⁺ vs μ⁻μ⁻
- a_{sl} is expected to be very small in the SM, $a_{sl}=(\Delta\Gamma/\Delta M) \tan\phi_{12}$, where $\tan\phi_{12}=Arg(-\Gamma_{12}/M_{12})$

In SM (B°) $a_{sl}^{d} = -4.1 \times 10^{-4}$, (B_s) $a_{sl}^{s} = +1.9 \times 10^{-5}$

Nygren Symposium, May 2, 2014

48

Also measure a_{sl}^{d} using $D^{+}\mu^{-}\nu$, $D^{+}\rightarrow K\pi^{+}\pi^{+}$

 $a_{sl}^{d} = (0.93 \pm 0.45 \pm 0.14)\%$

a_{sl} according to D0

Nygren Symposium, May 2, 2014

50

LHCb measurement

■ Use D_sµ⁻ν, D_s→φπ[±], magnet is periodicaly reversed. For magnet down:

- Effect of B_s production asymmetry is reduced to a negligible level by rapid mixing oscillations
- Calibration samples (J/ψ, D*+) used to measure detector trigger, track & muon ID biases

Nygren Symposium, May 2, 2014

Extract B_s fractions

- Crucial to set absolute scale for B_s rates, since not given by e⁺e⁻ machines.
- Must correct for $B_s \rightarrow D^o K^+ X \mu \nu$, also $\Lambda_b \rightarrow D^o p X \mu \nu$ $f_s / (f_u + f_d) = 0.136 \pm 0.004^{+0.012}_{-0.011}$

B_s fraction - hadronic

Also can use hadronic decays + theory ~35 pb⁻¹

 $\sqrt{s} = 7$ TeV LHCb Preliminary

Semileptonics: $f_s / f_d = 0.272 \pm 0.008^{+0.024}_{-0.022}$

Detector Requirements - General

- Every modern heavy quark experiment needs:
 - Vertexing: to measure decay points and reduce backgrounds, especially at hadron colliders
 - Particle Identification: to eliminate insidious backgrounds from one mode to another where kinematical separation is not sufficient
 - Muon & electron identification because of the importance of semileptonic & leptonic final states including J/ψ decay
 - **\square** γ, π^o & η detection
 - Triggering, especially at hadronic colliders
 - High speed DAQ coupled to large computing for data processing
 - An accelerator capable of producing a large rate of b's

CPV Time Evolution

- Consider $a[f(t)] = \frac{\Gamma(\overline{M} \to f) - \Gamma(M \to f)}{\Gamma(\overline{M} \to f) + \Gamma(M \to f)}$ Define $A_f = A(M \to f), \ \overline{A}_f = A(\overline{M} \to f), \ \lambda_f = \frac{p}{a} \frac{\overline{A}_f}{\overline{A}_f}$
- Only 1 $A_f \& \Delta \Gamma = 0 \Gamma(M \rightarrow f) = N_f |A_f|^2 e^{-\Gamma t} (1 \operatorname{Im} \lambda_f \sin(\Delta M t))$
- Then $a[f(t)] = -\text{Im}\lambda_f$, & λ_f is a function of V_{ij} in SM
- For B°, $\Delta \Gamma \approx 0$, but there can be multiple A_f $\Gamma(M \rightarrow f) = N_f |A_f|^2 e^{-\Gamma t} \left(\frac{1 - |\lambda_f|^2}{2} \cos(\Delta M t) - \operatorname{Im} \lambda_f \sin(\Delta M t) \right)$
- If in addition $\Delta\Gamma \neq 0$, eg. B_s $\Gamma(M \to f) = N_f |A_f|^2 e^{-\Gamma t} \left(\frac{1 + |\lambda_f|^2}{2} \cosh \frac{\Delta\Gamma t}{2} + \frac{1 - |\lambda_f|^2}{2} \cos(\Delta M t) - \operatorname{Re} \lambda_f \sinh \frac{\Delta\Gamma t}{2} - \operatorname{Im} \lambda_f \sin(\Delta M t) \right)$

See Nierste arXiv:0904.1869 [hep-ph] May 2, 2014

Transversity I

$$|A_{0}|^{2}(t) = |A_{0}|^{2}e^{-\Gamma_{s}t}\left[\cosh\left(\frac{\Delta\Gamma}{2}t\right) - \cos\phi_{s}\sinh\left(\frac{\Delta\Gamma}{2}t\right) + \sin\phi_{s}\sin(\Delta mt)\right],$$

$$|A_{\parallel}(t)|^{2} = |A_{\parallel}|^{2}e^{-\Gamma_{s}t}\left[\cosh\left(\frac{\Delta\Gamma}{2}t\right) - \cos\phi_{s}\sinh\left(\frac{\Delta\Gamma}{2}t\right) + \sin\phi_{s}\sin(\Delta mt)\right],$$

$$|A_{\perp}(t)|^{2} = |A_{\perp}|^{2}e^{-\Gamma_{s}t}\left[\cosh\left(\frac{\Delta\Gamma}{2}t\right) + \cos\phi_{s}\sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi_{s}\sin(\Delta mt)\right],$$

$$\Im(A_{\parallel}^{*}(t)A_{\perp}(t)) = |A_{\parallel}||A_{\perp}|e^{-\Gamma_{s}t}\left[-\cos(\delta_{\perp} - \delta_{\parallel})\sin\phi_{s}\sinh\left(\frac{\Delta\Gamma}{2}t\right)\right]$$

$$-\cos(\delta_{\perp} - \delta_{-}\|)\cos\phi_{s}\sin(\Delta mt) + \sin(\delta_{\perp} - \delta_{\parallel})\cos(\Delta mt)],$$

$$\Re(A_{0}^{*}(t)A_{\parallel}(t)) = |A_{0}||A_{\parallel}|e^{-\Gamma_{s}t}\cos(\delta_{\parallel} - \delta_{0})[\cosh\left(\frac{\Delta\Gamma}{2}t\right) - \cos\phi_{s}\sinh\left(\frac{\Delta\Gamma}{2}t\right)]$$

 $+\sin\phi_s\sin(\Delta m t)],$

$$\Im(A_0^*(t)A_{\perp}(t)) = |A_0||A_{\perp}|e^{-\Gamma_s t}[-\cos(\delta_{\perp} - \delta_0)\sin\phi_s\sinh\left(\frac{\Delta\Gamma}{2}t\right) \\ -\cos(\delta_{\perp} - \delta_0)\cos\phi_s\sin(\Delta m t) + \sin(\delta_{\perp} - \delta_0)\cos(\Delta m t)],$$

$$|A_s(t)|^2 = |A_s|^2 e^{-\Gamma_s t} \left[\cosh\left(\frac{\Delta\Gamma}{2}t\right) + \cos\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi_s \sin(\Delta m t)\right], \quad \text{only term for } f = f_{cp}$$

$$\Re(A_s^*(t)A_{\parallel}(t)) = |A_s||A_{\parallel}|e^{-\Gamma_s t}[-\sin(\delta_{\parallel} - \delta_s)\sin\phi_s\sinh\left(\frac{-\Gamma_s}{2}t\right) - \sin(\delta_{\parallel} - \delta_s)\cos\phi_s\sin(\Delta m t) + \cos(\delta_{\parallel} - \delta_s)\cos(\Delta m t)],$$

$$\Im(A_s^*(t)A_{\perp}(t)) = |A_s||A_{\perp}|e^{-\Gamma_s t}\sin(\delta_{\perp} - \delta_s)\left[\cosh\left(\frac{\Delta\Gamma}{2}t\right) + \cos\phi_s \sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi_s \sin(\Delta m t)\right],$$

$$\Re(A_s^*(t)A_0(t)) = |A_s||A_0|e^{-\Gamma_s t}[-\sin(\delta_0 - \delta_s)\sin\phi_s\sinh\left(\frac{\Delta\Gamma}{2}t\right) -\sin(\delta_0 - \delta_s)\cos\phi_s\sin(\Delta m t) + \cos(\delta_0 - \delta_s)\cos(\Delta m t)].$$
59

The Standard Model

Nygren Symposium, May 2, 2014

CUSE UNIL

VDED NO

Quark Mixing & CKM Matrix

 All 3 generations of -1/3 quarks (d, s, b) are mixed

Described by CKM matrix (also v are mixed)

$$V_{\left(\frac{2}{3},-\frac{1}{3}\right)} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1-\lambda^2/2 & \lambda & A\lambda^3(\rho-i\eta) \\ -\lambda & 1-\lambda^2/2 & A\lambda^2 \\ A\lambda^3(1-\rho-i\eta) & -A\lambda^2 & 1 \end{pmatrix}$$

- Unitary 3x3 matrix can be described by 4 parameters λ =0.225, A=0.8, constraints on ρ & η
- These are fundamental constants of nature in the Standard Model

Effects on M_w from quantum loops

- FP probes large mass scales via virtual quantum loops. An example, of the importance of such loops are changes in the W mass

 \square M_w changes due to m_H Gave predictions of m_μ prior to discovery

Β-→J/ψ **Κ**-

LHCb Event Display

□ 20 MHz of bunch crossing (in 2012, with 50 ns bunch spacing) with an average of 1.5 pp interactions per bunch crossing → this level of pileup not an issue for LHCb