Big Data and rare events: The boson in the hay-stack

Niko Neufeld, CERN/PH-Department niko.neufeld@cern.ch

The Large Hadron Collider

- 27 km
- Vacuum at 10⁻¹³atm
- More than 9600 magnets
- Dipole magnets at -271.3 C → 0.8 C colder than outer space
- Energy in the beam corresponds to a TGV at 150 km/h
- Cost: 5 billion CHF
- 4 large experiments

So what do we do with all that?

The LHC Experiments today

- ALICE "A Large Ion Collider Experiment"
 - Size: 26 m long, 16 m wide, 16m high; weight: 10000 t
 - 35 countries, 118 Institutes
 - Material costs: 110 MCHF
- ATLAS "A Toroidal LHC ApparatuS"
 - Size: 4 6m long, 25 m wide, 25 m high; weight: 7000 t
 - 38 countries, 174 institutes
 - Material costs: 540 MCHF
- CMS "Compact Muon Solenoid"
 - Size: 22 m long, 15 m wide, 15 m high; weight: 12500 t
 - 40 countries, 172 institutes
 - Material costs: 500 MCHF
- LHCb "LHC beauty" (b-quark is called "beauty" or "bottom" quark)
 - Size: 21 m long, 13 m wide, 10 m high; weight: 5600 t
 - 15 countries, 52 Institutes
 - Material costs: 75 MCHF
- Regular upgrades ... first 2013/14 (Long Shutdown 1)

1 CHF ~ 1 USD

Lead meets lead in ALICE

Mr. Higgs'es boson is also in ATLAS

An extremely rare event in LHCb

$$\mathsf{B}^0_\mathsf{s} \longrightarrow \mu^+ \mu^-$$

Big Data and rare events: The boson in the hay-stack - ISC 2014 N. Neufeld

31.05.2012 15:03

What's mother nature's menu?

A typical collision is "boring"

Although we need also some of these "boring" data as cross-check, calibration tool and also some important "low-energy" physics

"Interesting" physics is about 6–8 orders of magnitude rarer: one in a million down to one in 100 millions "Exciting" physics involving new particles/discoveries is \geq 9 orders of magnitude below σ_{tot} : one in a

Need to efficiently identify these rare processes from the overwhelming background <u>before</u> reading out & storing the whole event

billion or even mor rare

boson in the

The needle in the hay-stack

Simulation from CMS

This is what we time looking thorn a 000 gosebtics less We be this 2000 and!

The hay: 15 million sensors

How do you sift through 600 Terabytes / s?
This means going through a 100 m high stack of DVDs

Filter 399 out of 400 collisions Must keep the good = interesting ones

Data Rates

- Particle beams cross every 25 ns (40 MHz)
 - Up to 25 particle collisions per beam crossing
 - Up to 10⁹ collisions per second
- Two event filter/trigger levels
 - Data processing starts at readout
 - Reducing 10⁹ p-p collisions per second to ~ 1000 per second
- Raw data to be stored permanently: >25 PB/year

Physics Process	Events/s
Inelastic p-p scattering	10 ⁸
b	10 ⁶
$W \rightarrow e u$; $W \rightarrow \mu u$; $W \rightarrow \tau u$	20
$Z \rightarrow ee$; $Z \rightarrow \mu\mu$; $Z \rightarrow \tau\tau$	2
t	1
Higgs boson (all; $m_H = 120$ GeV)	0.04
Higgs boson (simple signatures)	0.0003
Black Hole (certain properties)	0.0001

	Incoming data rate	Outgoing data rate	Reduction factor
Level1 Trigger (custom hardware)	40000000 s ⁻¹	10^5 – 10^6 s ⁻¹	400-10,000
High Level Trigger (software on server farms)	2000-1000000 s ⁻¹	1000 -10000 s ⁻¹	10-2000

Challenge #1 The first level trigger

A small subset of the data to select events

Filtering in hardware

ATLAS

- Sophisticated electronics
- Hundreds of custombuilt boards – process a small piece of the collision at enormous speeds (40 million times / second)
- They give a crude, but effective decision, based on simple criteria

Level 1 Trigger

- The Level 1 Triggers are implemented in hardware: FPGAs and ASICs → difficult / expensive to upgrade or change, maintenance by experts only
- Decision time: ~ a small number of microseconds
 The Level 1 Triggers are hard real-time systems
- They use "simple" hardware-friendly signatures → working with partial information and with drastic simplifications has a price → interesting and valuable events are lost

A Track-Trigger at 40 MHz 2020++

- Goals:
 - Find 1000s of particle trajectories in real-time (couple of micro-seconds)
 - Improve sensitivity to interesting events

Pattern finding - tracks

Same in 2 dimensions

 Can be much more complicated: lots of tracks / rings, curved / spiral trajectories, spurious measurements and various other imperfections

Tracking Triggers: finding particle trajectories in hardware

- Pattern Recognition Associative Memory (PRAM)
 - Based on CAM cells to match and majority logic to associate hits in different detector layers to a set of pre-determined hit patterns
 - Pattern recognition finishes soon after hits arrive
 - Potential candidate for L1 pattern recognition
 - However: Latency
 - Challenges:
 - Increase pattern density by 2 orders of magnitude
 - Increase speed x 3
 - Same Power
 - Use 3D architecture: Vertically Integrated Pattern Recognition AM
 VIPRAM

Big Data and rare events: The boson in the hay-stack - ISC 2014 N. Neufeld

Level 1 challenge

- Can we do this without custom hardware?
- Maybe in GPGPUs / XeonPhis studies ongoing in some (lower-rate) experiments
- We need low and ideally deterministic latency
- Need an efficient interface to detector-hardware: CPU/FPGA hybrid?
- Or forget about the whole L1 thing altogether and do everything in software requires a lot of fast, low-power, radiation-hard low-cost links (remember the 600 TB/s)

Challenge #2 Data Acquisition and High Level Trigger

High Level Trigger

"And this, in simple terms, is how we find the Higgs Boson"

- Pack the knowledge of tens of thousands of physicists and decades of research into a huge sophisticated algorithm
- Several 100.000 lines of code
- Takes (only!) a few 10 -100 milliseconds per collision

CMS 2012 L-1 Trigger & DAQ

Overall Trigger & DAQ Architecture: 2 Levels:

Data Acquisition (generic example)

Every Readout Unit has a piece of the collision data All pieces must be brought together into a single compute unit The Compute Unit runs the software filtering (High Level Trigger – HLT)

- GBT: custom radiation- hard link from the detector 3.2 Gbit/s
- DAQ ("event-building") links some LAN (10/40/100 GbE / InfiniBand)
- Links into compute-units: typically 10 Gbit/s (because filtering is currently compute-limited)

Future DAQs in numbers

		Rate of		
		events into	HLT bandwidth	
	Event-size [kB]	HLT [kHz]	[Gb/s]	Year [CE]
ALICE	20000	50	8000	2019
ATLAS	4000	200	6400	2022
CMS	4000	1000	32000	2022
LHCb	100	40000	32000	2019

40000 kHz == collision rate

→ LHCb abandons Level 1 for an all-software trigger

Design principles

- Minimize number of expensive "core" network ports
- Use the most efficient technology for a given connection
 - different technologies should be able to co-exist (e.g. fast for building, slow for end-node)
 - keep distances short
- Exploit the economy of scale → try to do what everybody does (but smarter ©)

A realistic DAQ / HLT for LHC

DAQ challenge

- Transport multiple Terabit/s reliably and costeffectively
- Integrate the network closely and efficiently with compute resources (be they classical CPU or "many-core")
- Multiple network technologies should seamlessly co-exist in the same integrated fabric ("the right link for the right task")

Summary

- The LHC experiments need to reduce 100 TB/s to ~ 25 PB/ year
- This is achieved with massive use of FPGAs, custom ASICs and x86 computing power
- Large, deep-buffer, local area networks are used to distribute data among the individual x86 servers
- The future will see massive increase of required programmable computing power, much more data will be moved off detector
 - Intense R&D ongoing on accelerators, non-X86, spatial computing and data-centre networking

Acknowledgements

- Many stimulating, fun discussions with the LHC Trigger-DAQ community and with a lot of smart people in CERN/IT (openlab) and industry are gratefully acknowledged
- Material has been adapted from A. Hirstius (now Intel), W. Smith (U. Wisconsin)

More material

Finding vertices in FPGAs

- Use r-coordinates of hits in Si-detector discs (detector geometry made for this task!)
- Find coincidences between hits on two discs
- Count & histogram

Moving on to Bigger Things...

LHC planning

The High Level Trigger is ...

The question is: How do we get the data in?

Big Data and rare events: The boson the

g Data and rare events: The boso∰n the hay-stack - ISC 2014 N. Neufeld

High Level Trigger: Key Figures

- Existing code base: 5 MLOC of mostly C++
- Almost all algorithms are single-threaded (only few exceptions)
- Currently processing time on a X5650 per event: several 10 ms / process (hyper-thread)
- Currently between 100k and 1 million events per second are filtered online in each of the 4 experiments

High Level Trigger compared to HPC

Like HPC:

- full ownership of the entire installation architecture and hardware components
- single "client" / "customer"
- have a high-bandwidth interconnect

Unlike HPC:

- many independent small tasks which execute quickly
 - → no need for checkpointing (fast storage)
 - no need for low latency
- data driven, i.e. when the LHC is **not** running (70% of the time) the farm is idle > interesting ways around this (deferal, "offline usage)
- facility is very long-lived, growing incrementally

Classical fat-core event-builder

Finding Muons (2d view)

Calorimeter data Jet 0, pt: 205.1 GeV Jet 1, pt: 70.0 GeV Big Data and rare events: The boson hay-stack - ISC 2014 N. Neufeld