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What is Heavy Flavor Physics ? 
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 Define Heavy Flavor Physics 
 Flavor Physics: Study of interactions that differ 

among flavors: (quark flavors are u, d, c, s, b, t) 
 Heavy: Not SM neutrino’s or u or d quarks, maybe 

s quarks, concentrate here on b quarks (some c), 
t too heavy 
 

 
 
 

                                                
too light 

 u, d, ν’s 
maybe 

s, µ 
just right 

c & b, τ; νΜ’s ? 

too heavy 

t 
 



Physics Beyond the Standard Model 

 Baryogenesis: From current measurements can only 
generate (nB-nB)/nγ =~10-20 but ~6x10-10 is needed. Thus 
New Physics must exist to generate needed CP Violation 

 Dark Matter 
 
 
 

 Hierarchy Problem: We don’t understand how we 
get from the Planck scale of Energy ~1019 GeV to the 
Electroweak Scale ~100 GeV without “fine tuning” 
quantum corrections 
 
 

3 

Gravitational 
lensing 

Fermilab Academic Lectures, May, 2014 



Masses 
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12 orders of magnitude differences not explained; t quark as heavy as Tungsten 



Formalism 
 Standard model fermions 

 
 
 

 SM gauge bosons: γ, W±, Z0 & H0. 
 Lagrangian for charged current interactions is 

 
 where 
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Quark Mixing 
 Consider the charm quark. It forms a              

2nd generation doublet with the strange       
quark (c,s). Yet it also decays into the               
d quark which is in the first generation           
with the u quark (u,d). 

 We say this happens because the s & d quarks 
are “mixed” i.e. their wave functions really are 
described by a rotation matrix 
 

 

     where the s´ couples to c   
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θC=13o 



Quark Mixing & CKM Matrix 
 All 3 generations of -1/3 quarks  
   (d, s, b) are mixed 
 Described by CKM matrix (also ν are mixed) 

 
 

 
 Unitary 3x3 matrix can be described by 4 

parameters λ=0.225, A=0.8, constraints on ρ & η 
 These are fundamental constants of nature in the 

Standard Model  
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Shown to order λ4 



CKM vs. PMNS 
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Why these values? Are the two related? Are they related to masses? 

Area ~V2 



 Υ, formed of bb quarks,  
   found at Fermilab in the          

µ+µ- chanel 
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A bit of history 
Herb et. al, PRL 39, 252 (1977) 

 Followed by Doris Υ, Υ2 ; 
CLEO & CUSB that 
distinctly observed all 3 
states, & published on the 
1979 Xmas card 



Discovery of Y(4S) 
 The Υ states were narrow, their observed 

widths were consistent with 
   the experimental mass  
   resolution, so below the  
   threshold to decay into BB 
 Another resonance was 
found that was ~20 MeV wide, 
& subsequently shown to decay 
into either B+B- or B0B0    
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“More spherical events” 



B Experiments 
 

S. Stone 
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 e+e- at Y(4S) ARGUS, CLEO, 
BaBar, & Belle 

 e+e- at Z0, LEP & SLC 
 CDF & D0, 1.8 TeV pp 
 LHCb, CMS & ATLAS, 7-8 TeV pp 

 



e+e- at Y(4S)  
 All detectors have 

cylindrical 
geometries with 
common elements 

 Key: PID, CsI ecal 
 Vertex detector 

usually Si strips, 
to measure B & B  
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 vertex separations, possible since beams in Belle &   
Babar have different energies; causes boost along 
beam direction. Typical resolutions on τB ~900 fs. 



Central detectors at pp 
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(-) 

CDF 



The LHC 
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   4 TeV x 4 TeV pp collisions (future ~7 x ~7) 



The LHC 
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27 km in circumference 
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 The LHCb Detector 



Detector Geometry 
 Complementary to ATLAS & CMS 
 Much less expensive  
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The Forward Direction at the LHC 
 The primary pp collision 

produces a pair of bb quarks. 
They then form hadrons. In the 
forward region at LHC the bb 
production σ is large  

 The hadrons containing the b & 
b quarks are both likely to be in 
the acceptance. Essential for 
knowing if a neutral B meson 
started out as a B0 or B0, 
determined by “flavor tagging”  

 At L=2x1032/cm2-s, we get 
~1012 B hadrons in 107 sec   
 Fermilab Academic Lectures, May, 2014 
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θ B (rad) 
θ B (rad) 

Production 
∠ Of B vs B 

130 µb 
300 µb 

Pythia production cross section  
(7 TeV) 

η=−ln(tanθ/2) 

pT 
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Detector Workings  

19 

LHCb detector ~ fully installed and commissioned    walk through the 
detector using the  example of a Bs→DsK decay 
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  φ  
sensors 

    R 
sensors 

B-Vertex Measurement 

Vertexing: 
• trigger on impact parameter 
• measurement of decay distance  
  & decay time=d/v=md/p 

Ds 
Bs K+ 

K− 

K+ 

π− 

d~1cm 

47 µm 144 µm 

440 µm 
Primary vertex 

Decay time resolution = 40 fs 

σ(τ) ~40 fs 

Example: Bs → Ds K 

Vertex Locator (Velo) 
Silicon strip detector with 
 ~ 5 µm hit resolution 
 30 µm IP resolution 
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Momentum and Mass 
measurement  

Momentum meas. + direction (VELO):             
Mass resolution for background suppression 
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btag 

Bs K+ 
K− 

π+, K+ 

π− 
Ds 

Primary vertex 

Bs→ Ds K 
Mass  resolution 
σ ~15 MeV 

Bo 

m(DsK) (MeV) 

o         -     + 

5100                           5300                          5500                         5700 
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Hadron Identification 

 

RICH: K/π identification using Cherenkov light emission angle 

RICH1:   5 cm aerogel n=1.03 
        4 m3 C4F10 n=1.0014 

btag 

Bs K+ 
K− 

π+,K+ 

π− 
Ds 

Primary vertex 

KK : 96.77 ± 0.06% 
πK : 3.94 ± 0.02% 

Bs → Ds K 

22 

SS flavour tagging 

RICH2:   100 m3 CF4  n=1.0005 
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Calorimetry and L0 trigger 

e 

h 

Calorimeter system :   
• Identify electrons, hadrons, π0 ,γ 
• Level 0 trigger: high ET electron and hadron 

btag 

Bs K+ 
K− 

K+ 

π− 
Ds 

Primary vertex 

ECAL  (inner modules):  σ(E)/E ~ 8.2% /√E + 0.9% 
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Muon identification and L0 trigger 

µ 

Muon system:  
• Level 0 trigger: High Pt muons 
• OS flavour tagging 

24 
btag 

Bs K+ 
K− 

K+ 

π− 
Ds 

Primary vertex 
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 Hardware level (L0) 
Search for high-pT    μ, e, γ and hadron candidates     
 

 Software level (High Level Trigger, HLT) 
Farm with O(29000) multi-core processors) 
Very flexible algorithms, writes ~5 kHz to storage 

 
 
 
 
 
 

 

Trigger is crucial as σbb is less than 1% of total 
inelastic cross section and B decays of  
interest typically have B ranching ratios of <10-5 

Triggering 

25 

This is the bottleneck 



Detector Performance 
 Detector works better than expected 
 Run at 4x10-32 cm-2/s instead of 2x1032, with 

fewer bunches in the machine which is more 
difficult ~<1.5> interactions/crossing 

 Detector efficiency >95% for all systems 
 Problems: Vertex resolution slightly worse, 

flavor tagging somewhat poorer 
 Luminosity is leveled – small changes of L 

with time; beams are brought closer together 
when currents decrease 
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Luminosity Leveling 
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 Luminosity is maintained 
as at a constant value of  
~4x1032/cm∙s by displacing 
beams transversely  
 Integral L is 1/fb in 2011, 
collected 2/fb more in 
2012 
 
   

 



B-→J/ψ K- 
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Running Conditions 
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1.5 pp 
 



 Consider the b decay of 
 
 
 

 The decay width is given by 
 
 

 Since Γµ⊕τµ=ħ, measuring the muon lifetime 
determines GF. 

Weak decay constant 
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|Vus| 
 |Vud| =0.97418±0.00026 
   is measured using  
   nuclear β decays  
 For |Vus| use semileptonic kaon 
   decays. The decay width is given by 

 
 
 CK is a Clebsch-Gordan coefficent =1/2 
  SEW is the short-distance EW correction =1.0232 
 ∆’s are SU(2) breaking & long-distance E&M corrects 
 IK,l(λ) is the phase space integral  
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|Vus| II 
 f+(0): Here we have quark transition, yet the 

quarks have to form a single hadron, the π0 

 The probability of this happening is 
parameterized in terms of the 4-momentum 
transfer squared, q2=(p-p′)2. From the fact 
that the K→π weak transition must be Vector  
 

 For massless leptons the f-(q2) term vanishes 
 The shape of f(q2) can be measured, so only 

f+(0) remains to be calculated.  
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|Vus| III 
 Measurements of f+(0)|Vus| 
 f+(0)=0.964(5) 
 λ=|Vus|=0.2246±0.0012 
 Experiment measures 
K lifetime, shape of form- 
factor & value of the form- 
factor at q2=0 
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|Vcb| 
 Basic decay diagram: 

 
 
 
 
 

 Two methods used to determine |Vcb| from 
data: Exclusive, only a D or D* produced, & 
Inclusive, take all b→c decays 

 If B→D one form-factor, for B→D*, have 3 
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Exclusive |Vcb| 
 Based on HQET invented by N. Isgur & M. Wise 
 Idea is that there are spin & flavor symmetries 

between two ∞ heavy quarks; the b & c quarks are 
not quite that heavy, but corrections can be 
calculated in a controlled way. In HQET only 1 ff for 
B→D*, where there are 3 independent spin states 

 Consider the invariant 4-velocity transfer, ω. When 
ω=1, the b transforms into a c with the same velocity, 
so the form-factor is unity modulo some small 
corrections 

 Note  
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Exclusive |Vcb| II 
 F(ω) is the form-factor 

 
 

 K(ω) is the phase space factor, which goes to 
zero as ω→, so data must be extrapolated. 
There are theoretical models for the shape of 
F(ω). All that’s necessary is the lifetime, the 
value of the branching fraction at F(1), which 
determines (F(1)|Vcb|)2, & the theoretically 
determined corrections to F(1) from 1 
 Fermilab Academic Lectures, May, 2014 36 



Exclusive |Vcb| III 
 Predictions of 
   F(1) 
 Lattice (FNAL/MILC): 
0.906±0.004±0.012 
 QCD sum rules 
0.86±0.02 

 |Vcb|x103=39.04±0.49exp±0.53QCD±0.19QED (Lattice) 

               =41.6±0.6exp±1.9thy (Sum rules) 
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BaBar  arXiv:0705.4008 



Inclusive |Vcb| 
 Here assume that the ensemble of exclusive b→c 

decays, B→Dlν, D*lν, D**lν,… can be 
approximated by a continuum, called “duality”. The 
model is called the Heavy Quark Expansion (HQE).  

 The decay rate is related to |Vcb| as 
 
 
 
 

 

 We will not go into the details here see arXiv:0902.3743 
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Inclusive |Vcb| II 
 Latest result: |Vcb|x103 = 41.94±0.43fit±0.59thy 

                                      = 41.94±0.73 

 Exclusive (Lattice)        = 39.04±0.75 
 Difference has χ2=3.8 for 1 dof, prob=5% 
 Could there be a problem here? 
 Λb/B0 lifetime ratio: HQE predicts that the 

lifetime ratio is almost equal, with Λb being 
shorter by a few %.  
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Λb/B0 lifetime ratio 
 Λb lifetime 

measurements were 
much lower 

 LHCb now finds 
 
 

 Consistent with HQE 
original prediction. 
Credit Uraltsev 
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Exclusive |Vub| 
 No theory like HQET 
 Must rely on Lattice & model calculations 
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See Ricciardi arXiv:1403.7750 



Exclusive |Vub| 
 Use HQE. Here many final states possible 

 
 
 
 

 So take e.g. exclusive (3.28±0.29)x10-3 

 & inclusive                   (4.20 ±0.25)x10-3 

 These are inconsistent!  
 No resolution in sight 
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See Ricciardi arXiv:1403.7750 

Models: 



|Vub| 
 Summary 
 Note  
ρ=ρ(1-λ2/2) 
η=η(1-λ2/2) 
 Bands are  
±2σ 
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Neutral Meson Mixing 
 Neutral heavy mesons can transform 
    into their anti-particles via 2nd 

    order weak interactions 
 Short distance transition rate  
   depends on  

 mass of intermediate qi, the heavier the larger, favors 
mesons containing s & b, since t is allowed 

 CKM elements Vij.  

44 

almost zero? 

from Van Kooten 

New particles possible in 
the loop 
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Mixing formalism 
 Hamiltonian 

 
 

 Schrodinger equation 
 
 

 Diagonalizing 
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B Mixing data 
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First seen by ARGUS 
First measured by CDF 



 D*+→π+Do provides an initial flavor tag 
 “Wrong-sign” (WS) Do can appear via mixing or a 

rare decay that gives the same final state called 
doubly-Cabbibo suppressed decay (DCS), where 
DCS follow ~exp(-t/τDo). Mixing, however, 
depends on t in a more complicated way   

 Define RD=DCS/(Cabibbo favored). Mixing is 
parameterized as x´ & y´, functions of ∆m & ∆Γ. 

 Measure Wrong-sign/Right-sign, R(t)= (WS/RS) 
  

Do-Do  Mixing 
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Charm mixing result 

48 

. 

D*+→π+Do, 
Do→K-π+ (RS) 
Do→K+π- (WS) 
 
 

RS WS 

No mixing 
excluded at 9.1σ, 
systematic errors  
are included 
y´=(7.2±2.4)% 
x´2=(-0.09±0.13)% 
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B mixing CKM constraints 
 For B0 mixing 

 
 

BB is a theoretical parameter, fB, the meson 
decay constant is also estimated theoretically 
though in principle measuring B-→τν would 
determine |Vub|2fB2. F is a known function & 
ηQCD~0.8 
 Similar Eq. for Bs mixing. Errors cancel in  
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B mixing & CKM constraints 

 We have 
 
 

 So the ratio gives  
a circle in the (ρ,η)  
plane centered  
at (1,0). 
 (Modulo small higher 
order corrections)   
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Sakharov conditions  
 Big bang gave matter & anti-matter 
 For the Universe to exist: 

1. Baryon # violation 
2. Departure from thermal equilibrium 
3. C & CP violation, where C is charge conjugation, 

e.g, C|p>=±|p>, & P is parity P|ψ(r)>=±|ψ(−r)> 
 1. is satisfied as SM gives B violation at high T 
 2. is satisfied from the EW phase transition 
 3. C & CP are violated by weak interactions 

 BUT amount of CPV is too small by 109, so 
new sources need to be found 
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CP formalism 
 Basic idea: two interfering amplitudes that 

ultimately involve the CKM parameter η. 
 
 
 
 

 Favorable if A & B are about the same size 
 Resulting rate difference depends on both a 

strong & weak phase difference 
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CP formalism 
 Consider specifically |B0＞, but this can be for 

any P0: K0, B0, B0
s, or D0. 

 CP|B0＞=|B0＞. So these are not CP 
eigenstates, but  

                              &                                are 
with  CP|B1

0＞=|B1
0＞ & CP|B2

0＞=−|B2
0＞ 

 To allow for CPV define  
 

where CP is violated if |p/q|≠1 
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CPV via interference of mixing & decay 

 Here we are interested in a final state that 
can be reached by either a |P0＞ or a |P0＞ 

 Then we can utilize  
mixing to provide another 
Interfering amplitude  
 f can be a CP eigenstate,                               

but it doesn’t have to be 
 Define                                                  . If  
we have “direct” CPV, but all that is needed is 
for                 which can happen even if  
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CPV for fCP 
 The asymmetry is given by 

 
 
 
 
 

 For |λ|=1, we have 
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CP mixing phase 
 Depends on CKM elements in mixing or box 

diagram 
 
 
 

 

 For B0                                       For Bs 
 
 
 

 arg(p/q)=β                                 arg(p/q)~0 
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CPV for B0 

 Need p/q and A/A. Choosing a suitable CP 
eigenstate forces A/A=1. p/q comes from 
mixing 

 B0: 
 
 

 From unitarity 
 
 

 This is SM  
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ρ 

η 

(ρ,η) 



B0→{cc} K0 
 For charmonium 

final states  (Belle) 
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β=              or 
 

Measurements of sin2β 
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 Requires knowledge 
of B flavor at birth – 
use info from the 
other B in the event 

 sin2β values 
Belle 
0.667±0.023±0.012 
BaBar: 
0.691±0.028±0.012 
World Average: 
0.682 ± 0.019  
 
 
 

B0 B0 B0 B0 

J/ψ Ks J/ψ KL 

Belle Belle 



CPV in Bs→J/ψ X 
 

 For f =J/ψ φ or J/ψ f0 
 
 
 
 

 
 Small CPV expected, good place for NP to 

appear. Non zero due 
    to CKM effects of order 
    λ4 in Vts  
 J/ψφ not a CP eigenstate. Why? But can be 

used 
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CPV Time Evolution for BS 

 Consider 
 

 Define 
 

 Only 1 Af & ∆Γ=0 

 Then                         , & λf is a function of Vij in SM  
 For Bo, ∆ΓΗ0, but there can be multiple Af 

 
 

 If in addition ∆Γ0, eg. Bs   
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See Nierste  
arXiv:0904.1869 [hep-ph] 



Transversity 
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for S-wave under φ predicted 
 by Stone & Zhang PRD 79, 
 074024 (2009)  } 



Transversity II 
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only term for f=fcp 



 Reconstructed 
π+π− mass spectrum 
 In region between 
arrows, measured  
to be  >97.7%  
CP-odd @95% cl 
 
                                    (1/fb) 
 (uncertainty for 3/fb~0.070 rad)   

background 

f  (980) 
peak, now use  
entire mass  
range 

0 

φs from Bs→J/ψπ+π− 
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 Combining LHCb results: 

φs results from J/ψφ 
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LHCb values 
Γ=0.6580±0.0054 
          ±0.0066 (ps-1) 
∆Γ=0.116 ±0.018 
          ±0.006 (ps-1) 
φs=0.001±0.101 
       ±0.027 (rad) 
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