S. Stone # Heavy Flavor Highlights #### What is Heavy Flavor Physics? - Define Heavy Flavor Physics - Flavor Physics: Study of interactions that differ among flavors - Heavy: Not SM neutrino's or u or d quarks, maybe s quarks, concentrate here on c & b quarks, t too heavy #### **Physics Beyond the Standard Model** - Baryogenesis: From current measurements can only generate $(n_B \bar{n}_B)/n_{\gamma} = \sim 10^{-20}$ but $\sim 6 \times 10^{-10}$ is needed. Thus New Physics must exist to generate needed CP Violation - Dark Matter Gravitational lensing Hierarchy Problem: We don't understand how we get from the Planck scale of Energy ~10¹⁹ GeV to the Electroweak Scale ~100 GeV without "fine tuning" quantum corrections #### Seeking New Physics - HFP as a tool for NP discovery - While measurements of fundamental constants are fun, the main purpose of HFP is to find and/or define the properties of physics beyond the SM - HFP probes large mass scales via virtual quantum loops. An example, of the importance of such loops is extracting the Higgs mass - \square M_w changes due to m_t $\frac{dM_{W}}{dm_{\star}} \alpha \frac{m_{t}}{M_{W}}$ - □ M_w changes due to m_H $\frac{dM_W}{dm_H} \alpha \frac{dm_H}{M_H}$ #### Flavor as a High Mass Probe #### Already excluded ranges $$\square \mathcal{L}_{eff} = \mathcal{L}_{SM} + \frac{c_i}{\Lambda_i} O_i, \text{ take } c_i = 1$$ #### Ways out - New particles have large masses >>1 TeV - 2. New particles have degenerate masses - 3. Mixing angles in new sector are small, same as in SM (MFV) - 4. The above already implies strong constrains on NP BF11, Oct. 20, 2011 & Perez arXiv:1002.0900; Neubert EPS 2011 talk #### **Ex. of Strong Constraints on NP** - Inclusive b \rightarrow s γ , (E γ > 1.6 GeV) - Measured (3.55±0.26)x10⁻⁴ (HFAG) - Theory (3.15±0.23)x10⁻⁴ (NNLL) Misiak arXiv:1010.4896 - Ratio = 1.13±0.11, Limits most NP models - Example 2HDM - m(H⁺) < 316 GeV</p> #### **Limits on New Physics** - It is oft said that we have not seen New Physics, yet what we observe is the sum of Standard Model + New Physics. How to set limits on NP? - One hypothesis: assume that tree level diagrams are dominated by SM and loop diagrams could contain NP <u>Tree diagram example</u> Loop diagram example #### **Quark Mixing & CKM Matrix** - In SM charge -1/3 quarks (d, s, b) are mixed - Described by CKM matrix (also v are mixed) $$V_{\left(\frac{2}{3},-\frac{1}{3}\right)} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$ $$= \begin{pmatrix} 1-\lambda^2/2 & \lambda & A\lambda^3(\rho-i\eta) \\ -\lambda & 1-\lambda^2/2 & A\lambda^2 \\ A\lambda^3(1-\rho-i\eta) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4)$$ - λ =0.225, A=0.8, constraints on ρ & η - These are fundamental constants in SM ## What are limits on NP from quark decays? Tree diagrams are unlikely to be affected by physics beyond the Standard Model #### **CP Violation in B° & K° Only** Absorptive (Imaginary) part of mixing diagram should be sensitive to New Physics. Lets compare ## They are Consistent - But consistency is only at the 5% level - Limits on NP are not so strong #### Limits on New Physics From B^o Mixing - Is there NP in B°-B° mixing? - $\langle \mathbf{B}^{o} | \mathbf{H}_{\Delta B=2}^{\text{SM+NP}} | \overline{\mathbf{B}}^{o} \rangle = \Delta_{d}^{NP} \langle \mathbf{B}^{o} | \mathbf{H}_{\Delta B=2}^{\text{SM}} | \overline{\mathbf{B}}^{o} \rangle$ $\Delta_{d}^{NP} = \text{Re} \, \Delta_{d} + i \text{Im} \Delta_{d}$ - Assume NP in tree decays is negligible, so no NP in |V_{ij}|, γ from B⁻→D^oK⁻ - Allow NP in Δ m, weak phases, A_{SI} , & $\Delta\Gamma$ Room for new physics, in fact SM is only at 5% c.l. #### One Clear Problem - B $\rightarrow \tau$ - ν , tree process: Can be new particles instead of W- but why not also in $D_{(s)}^+ \rightarrow \ell^+ \nu$? - sin2β, CPV in e.g. B°→J/ψ K₂: Box diagram - Source of most of the CKM discrepancy - See: E. Lunghi & A. Soni, "Demise of CKM & its aftermath," [arXiv:1104.2117], they advocate a 4th generation # Vub $|V_{ub}|$ (10⁻³) b \to u ℓv - An irritating problem: Lingering difference between inclusive b→uℓν, & exclusive B→πℓν, - Values |V_{ub}|x10⁻³ - Inclusive: 4.25±0.15±0.20 - Exclusive:3.25±0.12±0.28 New ## V_{ub} Consequences Use of Exclusive would increase $\tau v \sin 2\beta$ discrepancy, use of Inclusive would not solve the problem - Add new physics: right handed currents with coupling V_{ub}^{R} - □ B \to πℓν rate goes as $\begin{vmatrix} V_{ub}^L + V_{ub}^R \\ V_{ub}^L V_{ub}^R \end{vmatrix}^2$ □ B \to τν rate goes as $\begin{vmatrix} V_{ub}^L + V_{ub}^R \\ V_{ub}^L V_{ub}^R \end{vmatrix}^2$ - □ B \rightarrow X_u ℓ v rate goes as $|V_{ub}^L|^2 + |V_{ub}^R|^2$ - Can arise in SUSY - Not in loops - See Crivellin [arXiv:0907.2461], also Buras et.al, [arXiv: 1007.1993] #### Recent Results - NP must affect every process; the amount tells us what the NP is ("DNA footprint") - New data from CDF, D0, BaBar BES, BELLE, ATLAS, CMS & LHCb Not nearly enough time to cover ## $B^{o} \rightarrow K^{*o} \mu^{+} \mu^{-}$ Similar to K*γ, but more decay paths Several variables can be examined, e.g. muon forward-backward asymmetry, A_{FR} is well predicted Situation as of July 26 [4.4 fb⁻¹ □] BF11, Oct. 20, 2011 ## New B°→K*°μ+μ- New results from CDF 6.8 fb⁻¹ & LHCb 0.3 fb⁻¹ ## b Fractions (LHCb) - Important to set normalization scale for B_s - f_s/f_d using hadronic decays $$f_s / f_d = 0.253 \pm 0.017 \pm 0.017 \pm 0.020$$ Using Semileptonics: $$b\rightarrow (D^o, D^+, D_s, \Lambda_b) Xμυ$$ -independent of η & p_t $$f_s / f_d = 0.267^{+0.021}_{-0.020}$$ Theory error # $B_s \rightarrow \mu^+ \mu^-$ ■ SM branching ratio is (3.2±0.2)x10⁻⁹ [Buras arXiv: 1012.1447], NP can make large contributions. Many NP models possible, not just Super-Sym ## Discrimination - Select same topology as B→h⁺h⁻, add μ ID - Lots of other variables to discriminate against bkgrd: B impact parameter, B lifetime, B p_t, B isolation, muon isolation, minimum impact parameter of muons, muon polarization... Can use B→h⁺h⁻ to tune cuts or form a multivariate analysis, used by CDF & LHCb ## **CDF Result** Set a "two sided limit @ 90% CL" $4.6 \times 10^{-9} < \mathcal{B}(B_s^0 \to \mu^+ \mu^-) < 3.9 \times 10^{-8}$ This means to me that there isn't a statistically significant result #### LHCb | | | BDT<1/4 | 1/4 <bdt<1 2<="" th=""><th>½<bdt<3 4<="" th=""><th>3/4<bdt<1< th=""></bdt<1<></th></bdt<3></th></bdt<1> | ½ <bdt<3 4<="" th=""><th>3/4<bdt<1< th=""></bdt<1<></th></bdt<3> | 3/4 <bdt<1< th=""></bdt<1<> | |----|-------------------|-----------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------| | | # expected bkgrd | 2968±69 | 25.0±2.5 | 2.99±0.89 | 0.66±0.40 | | | # expected signal | 1.26±0.13 | 0.61±0.06 | 0.67±0.07 | 0.72±0.07 | | BF | Sum expected | 2969±69 | 25.6±2.5 | 3.66±0.89 | 1.38±0.41 | | | Observed | 2872 | 26 | 3 | 2 | 24 ## LHCb - LHCb does not observe any excess - In the two BDT signal bins expect 5.1 events if is at SM level, see 5 - Expected limit @95% (90%) - Observed limit @95% (90%) - p-value of bkgrnd only hypothesis - Observed limit with 2010 data - 1.5(1.2)x10⁻⁸ - 1.6(1.3)x10⁻⁸ - 14% - 1.5(1.2)x10⁻⁸ ## **CMS** #### Cut based analysis | | Barrel | Endcap | |-----------------------------------------|-----------|-----------| | # expected bkgrd | 0.60±0.35 | 0.80±0.40 | | # bkgrd B→h ⁺ h ⁻ | 0.07±0.02 | 0.04±0.01 | | # expected signal | 0.80±0.16 | 0.36±0.07 | | Sum expected | 1.47±0.39 | 1.20±0.41 | | Observed | 2 | 1 | #### Upper limits: - □ 1.9x10⁻⁸ @95% CL - □ 1.6x10⁻⁸ @90% CL ## LHC Combined - Observed limits - □ 1.1x10⁻⁸ @95% CL - □ 0.9x10⁻⁸ @90% CL, - This is 3.4(2.8) times SM value - LHC consistent with CDF with a probability of 0.3% - Set serious limits in NUHM1 SUSY model - Still lots of room for NP BF11, Oct. 20, 2011 #### **Neutral Meson Mixing** - Neutral mesons can transform into their anti-particles via 2nd order weak interactions - Short distance transition rate depends on New particles possible in loop + "long distance" for Do $$D^{O} \longrightarrow \pi\pi,.. \longrightarrow \overline{D}^{O}$$ - mass of intermediate q_{i} , the heavier the better, favors s & b since t is allowed, while for c, b is the heaviest - CKM elements V_{ii} #### **Some Definitions** - Weak interaction eigenstates are different that strong interaction eigenstates - $|M_L\rangle = p|M^o\rangle + q|\overline{M}^o\rangle, |M_H\rangle = p|M^o\rangle q|\overline{M}^o\rangle,$ - Since we observe the mesons via their weak decays, $m = (M_H + M_L)/2$, $\Delta M = M_H M_L$, $1/\tau = \Gamma = (\Gamma_H + \Gamma_L)/2$, $\Delta \Gamma = \Gamma_L \Gamma_H$, - Useful quantities are $x = \Delta M/\Gamma$, $y = \Delta \Gamma/2\Gamma$ - Do mixing predictions (from Petrov 2006): ## D° Mixing - Data from BaBar, Belle, Sales 1.5 HFAG-charm Lepton-Photon 2011 - Result 10.1σ from no mixing, though no single measurement is better than 5σ - Non-zero value allows for indirect CPV, as well as direct CPV in decay, or a mixture of the two #### **CPV in Charm** - Expect largest effects in Cabibbo Suppressed Decays. COULD REVEAL NP (see Grossman Kagan & Nir) - Nothing yet observed, limits at <1% level</p> - Experiments, in some cases, now measuring differences in CP asymmetries to cancel systematic effects - **Examples** (define $A(D \to f) = \frac{\Gamma(D \to f) \Gamma(\overline{D} \to \overline{f})}{\Gamma(D \to f) + \Gamma(\overline{D} \to \overline{f})}$) if $f = \overline{f}$, CP eigenst - □ Belle A(D⁺ $\rightarrow \phi \pi^{+}$)-A(D_s⁺ $\rightarrow \phi \pi^{+}$)=(-0.51±0.28±0.05)% [arXiv: 1110.0694] - □ CDF A(D° $\to\pi^+\pi^-$)=(-0.22±0.24±0.11)% & A(D° \to K⁺K⁻)= (-0.24±0.22±0.10)% [CDF Public Note 10269] - BaBar using T-odd triple products in D⁺ \rightarrow K⁺K_S π ⁺ π ⁻ finds A_T= (-1.21±1.00±0.46)% [arXiv:1105.4410v2] #### **CPV Time Evolution** Consider $$a[f(t)] = \frac{\Gamma(\overline{M} \to f) - \Gamma(M \to f)}{\Gamma(\overline{M} \to f) + \Gamma(M \to f)}$$ Define $$A_f \equiv A(M \to f), \overline{A}_f \equiv A(\overline{M} \to f), \quad \lambda_f = \frac{p}{q} \frac{A_f}{A_f}$$ - Only 1 A_f & $\Delta\Gamma=0$ $\Gamma(M\to f)=N_f\left|A_f\right|^2e^{-\Gamma t}\left(1-\operatorname{Im}\lambda_f\sin(\Delta Mt)\right)$ - Then $a[f(t)] = -\text{Im } \lambda_f$, & λ_f is a function of V_{ij} in SM - For B°, $\Delta\Gamma\approx0$, but there can be multiple A_f $$\Gamma(M \to f) = N_f \left| A_f \right|^2 e^{-\Gamma t} \left(\frac{1 - \left| \lambda_f \right|^2}{2} \cos(\Delta M t) - \operatorname{Im} \lambda_f \sin(\Delta M t) \right)$$ ■ If in addition $\Delta\Gamma \neq 0$, eg. B_s $$\Gamma(M \to f) = N_f \left| A_f \right|^2 e^{-\Gamma t} \left(\frac{1 + \left| \lambda_f \right|^2}{2} \cosh \frac{\Delta \Gamma t}{2} + \frac{1 - \left| \lambda_f \right|^2}{2} \cos(\Delta M t) - \operatorname{Re} \lambda_f \sinh \frac{\Delta \Gamma t}{2} - \operatorname{Im} \lambda_f \sin(\Delta M t) \right)$$ # CPV in $B_s \rightarrow J/\psi$ - Interference between mixing & decay - For $f = J/\psi \phi$ or $J/\psi f_0$ $$\varphi_s^{SM} \equiv -2\beta_s = -2\arg\left(-\frac{V_{ts}V_*}{V_{cs}V_{cb}^*}\right) = -0.04 \text{ rad}$$ Mixing: q/p - Small CPV expected, good place for NP to appear - B_s→J/ψφ is not a CP eigenstate, as it's a vector-vector final state, so must do an angular analysis to separate the CP+ and CP- components ## **Transversity** $$\frac{\mathrm{d}^4\Gamma(B_s^0\to J/\!\psi\phi)}{\mathrm{d}t\;\mathrm{d}\cos\theta\;\mathrm{d}\varphi\;\mathrm{d}\cos\psi} \equiv \frac{\mathrm{d}^4\Gamma}{\mathrm{d}t\;\mathrm{d}\Omega} \propto \sum_{k=1}^{10} h_k(t) f_k(\Omega)$$ | \boldsymbol{k} | $h_k(t)$ | $f_k(heta,\psi,arphi)$ | |------------------|-------------------------------------|---------------------------------------------------------| | 1 | $ A_0 ^2(t)$ | $2\cos^2\psi\left(1-\sin^2\theta\cos^2\phi\right)$ | | 2 | $ A_{\parallel}(t) ^2$ | $\sin^2\psi\left(1-\sin^2\theta\sin^2\phi\right)$ | | 3 | $ A_{\perp}(t) ^2$ | $\sin^2\psi\sin^2\theta$ | | 4 | $\Im(A_{\parallel}(t)A_{\perp}(t))$ | $-\sin^2\psi\sin 2\theta\sin\phi$ | | 5 | $\Re(A_0(t)A_{\parallel}(t))$ | $\frac{1}{2}\sqrt{2}\sin 2\psi\sin^2\theta\sin 2\phi$ | | 6 | $\Im(A_0(t)A_{\perp}(t))$ | $\frac{1}{2}\sqrt{2}\sin 2\psi\sin 2\theta\cos\phi$ | | 7 | $ A_s(t) ^2$ | $\frac{2}{3}(1-\sin^2\theta\cos^2\phi)$ | | 8 | $\Re(A_s^*(t)A_{\parallel}(t))$ | $\frac{1}{3}\sqrt{6}\sin\psi\sin^2\theta\sin2\phi$ | | 9 | $\Im(A_s^*(t)A_\perp(t))$ | $\frac{1}{3}\sqrt{6}\sin\psi\sin 2\theta\cos\phi$ | | 10 | $\Re(A_s^*(t)A_0(t))$ | $\frac{4}{3}\sqrt{3}\cos\psi(1-\sin^2\theta\cos^2\phi)$ | for S-wave under φ predicted by Stone & Zhang PRD 79, 074024 (2009) ## Transversity II $$|A_{0}|^{2}(t) = |A_{0}|^{2}e^{-\Gamma_{s}t}[\cosh\left(\frac{\Delta\Gamma}{2}t\right) - \cos\phi_{s}\sinh\left(\frac{\Delta\Gamma}{2}t\right) + \sin\phi_{s}\sin(\Delta mt)],$$ $$|A_{\parallel}(t)|^{2} = |A_{\parallel}|^{2}e^{-\Gamma_{s}t}[\cosh\left(\frac{\Delta\Gamma}{2}t\right) - \cos\phi_{s}\sinh\left(\frac{\Delta\Gamma}{2}t\right) + \sin\phi_{s}\sin(\Delta mt)],$$ $$|A_{\perp}(t)|^{2} = |A_{\perp}|^{2}e^{-\Gamma_{s}t}[\cosh\left(\frac{\Delta\Gamma}{2}t\right) + \cos\phi_{s}\sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi_{s}\sin(\Delta mt)],$$ $$\Im(A_{\parallel}^{*}(t)A_{\perp}(t)) = |A_{\parallel}||A_{\perp}|e^{-\Gamma_{s}t}[-\cos(\delta_{\perp} - \delta_{\parallel})\sin\phi_{s}\sinh\left(\frac{\Delta\Gamma}{2}t\right) - \cos(\Delta mt)],$$ $$\Re(A_{\parallel}^{*}(t)A_{\parallel}(t)) = |A_{\parallel}||A_{\parallel}|e^{-\Gamma_{s}t}\cos(\delta_{\parallel} - \delta_{0})[\cosh\left(\frac{\Delta\Gamma}{2}t\right) - \cos\phi_{s}\sinh\left(\frac{\Delta\Gamma}{2}t\right) + \sin\phi_{s}\sin(\Delta mt)],$$ $$\Re(A_{0}^{*}(t)A_{\parallel}(t)) = |A_{0}||A_{\perp}|e^{-\Gamma_{s}t}[-\cos(\delta_{\perp} - \delta_{0})\sin\phi_{s}\sinh\left(\frac{\Delta\Gamma}{2}t\right) - \cos\phi_{s}\sinh\left(\frac{\Delta\Gamma}{2}t\right) + \sin\phi_{s}\sin(\Delta mt)],$$ $$|A_{s}(t)|^{2} = |A_{s}|^{2}e^{-\Gamma_{s}t}[\cosh\left(\frac{\Delta\Gamma}{2}t\right) + \cos\phi_{s}\sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi_{s}\sin(\Delta mt), \text{ only term for } f=f_{cp}$$ $$\Re(A_{s}^{*}(t)A_{\parallel}(t)) = |A_{s}||A_{\parallel}|e^{-\Gamma_{s}t}[-\sin(\delta_{\parallel} - \delta_{s})\sin\phi_{s}\sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin(\delta_{\parallel} - \delta_{s})\cos\phi_{s}\sin(\Delta mt) + \cos(\delta_{\parallel} - \delta_{s})\cos(\Delta mt)],$$ $$\Im(A_{s}^{*}(t)A_{\perp}(t)) = |A_{s}||A_{\parallel}|e^{-\Gamma_{s}t}[-\sin(\delta_{\perp} - \delta_{s})\cos\phi\left(\frac{\Delta\Gamma}{2}t\right) + \cos\phi_{s}\sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi_{s}\sin(\Delta mt) + \cos(\delta_{\parallel} - \delta_{s})\cos(\Delta mt)],$$ $$\Im(A_{s}^{*}(t)A_{\perp}(t)) = |A_{s}||A_{\perp}|e^{-\Gamma_{s}t}\sin(\delta_{\perp} - \delta_{s})[\cosh\left(\frac{\Delta\Gamma}{2}t\right) + \cos\phi_{s}\sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi_{s}\sin(\Delta mt)],$$ $$\Im(A_{s}^{*}(t)A_{0}(t)) = |A_{s}||A_{\perp}|e^{-\Gamma_{s}t}[-\sin(\delta_{0} - \delta_{s})\sin\phi_{s}\sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi_{s}\sin(\Delta mt)],$$ $$\Im(A_{s}^{*}(t)A_{0}(t)) = |A_{s}||A_{\parallel}|e^{-\Gamma_{s}t}[-\sin(\delta_{0} - \delta_{s})\sin\phi_{s}\sinh\left(\frac{\Delta\Gamma}{2}t\right) - \sin\phi_{s}\sin(\Delta mt)].$$ # ΔM_s CDF 1 fb⁻¹ (2006) 17.77±0.10±0.07 ps⁻¹ LHCb 0.34 fb⁻¹ (2011) 17.725±0.041±0.026 ps⁻¹ Used to calibrate the flavor tagging # CPV in $B_s \rightarrow J/\psi \phi$ - Correlated constraints on $\Delta\Gamma_s$ versus CP violating phase ϕ_s - Ambiguous solution for $\Delta\Gamma_s$ →- $\Delta\Gamma_s$, ϕ_s → π - ϕ_s . # New LHCb os result All measurements consistent with SM value #### 1st Observation of $B_s \rightarrow J/\psi f_0(980)$ In $B_s \rightarrow J/\psi \phi$ the S-wave predicted (& now observed) under the ϕ $\bar{B}_s^0 \left\{ \frac{b}{\bar{s}} \right\} \frac{c}{\bar{s}} \right\} \pi^+ \pi$ could manifest itself as a $0^+ \pi^+ \pi^-$ system, the $f_0(980)$ [Stone & Zhang PRD 79, 074024 (2009)]. As a CP eigenstate can be used to measure ϕ_s 100 without angular analysis $$\frac{\Gamma(J/\psi f_0; f_0 \to \pi^+ \pi^-)}{\Gamma(J/\psi \phi; \phi \to K^+ K^-)} \approx 0.25$$ $m(J/\psi \pi^+\pi^-)$ within 90 MeV of 980 MeV $m(\pi^{+}\pi^{-}) \text{ within 30 MeV of } B_{s} \text{ mass}$ $f_{0}(980) \qquad \text{LHCb}$ Preliminary $\sqrt{s} = 7 \text{ TeV Data}$ # Confirmations - Belle, CDF & D0 - CDF measures τ also, ignoring CP violation, in this CP odd eigenstate. $\langle \tau_{Bs} \rangle = 1.43 \pm 0.04$ ps (PDG) # CPV in $B_s \rightarrow J/\psi f_0$ Log-likelihood profile - ϕ_s =-0.44±0.44±0.02 rad - Combined with $J/\psi\phi$, $\phi_s=0.03\pm0.16\pm0.07$ rad #### 1st Observation of $B_s \rightarrow J/\psi f_2(1525)$ #### ■ $B_s \rightarrow J/\psi K^+K^-$ $$R_{\text{effective}}^{f_2'} \equiv \frac{\mathcal{B}(B_s^0 \to J/\psi f_2'(1525), \ f_2'(1525) \to K^+K^-)}{\mathcal{B}(B_s^0 \to J/\psi \phi, \ \phi \to K^+K^-)} = (19.4 \pm 1.8 \pm 1.1)\%$$ for $|m(K^+K^-) - 1525 \text{ MeV}| < 125 \text{ MeV}.$ CKM B Fit - Now even better consistency with SM than B_d - However, much more room for NP than in B_d system due to less precise measurements # asl By definition |q/p| = 1-a_{sl} $$a_{sl} = \frac{\Gamma(\overline{M} \to f) - \Gamma(M \to \overline{f})}{\Gamma(\overline{M} \to f) + \Gamma(M \to \overline{f})}$$ - Here f is by construction flavor specific, $f \neq \overline{f}$ - Can measure eg. $\overline{B}_s \rightarrow D_s^+ \mu^- \nu$, versus $B_s \rightarrow D_s^- \mu^+ \nu$, - Or can consider that muons from two B decays can be like-sign when one mixes and the other decays, so look at μ+μ+ vs μ-μ- - a_{sl} is expected to be very small in the SM, a_{sl} =($\Delta\Gamma/\Delta M$) tan ϕ , for B° -7.6x10⁻⁴ for B_s +3.4x10⁻⁵ arXiv:1008.1593 [hep-ph] # D° result on a_{st} Using dimuons $$A_{sl}^b = (-0.787 \pm 0.172 \pm 0.093)\%$$ 3.9σ from zero # a_{sl} vs ϕ_s $a_{sl}^{s} = (\Delta \Gamma / \Delta M) \tan \phi_{s}$ Assume all asymmetry is due to B_s $a_{sl}^{s} = (-0.787 \pm 0.196)\%$ Majorana v's Several ways of looking for presence of heavy v's (N) in heavy quark decays if they are Majorana (their own antiparticles) and couple to "ordinary" v's Analogous to ν-less nuclear β decay ## **Current Searches** - Belle B⁻→D⁻ℓℓ′ - Found upper limits, $B^+ \to D^- e^+$ ee mode not competitive $B^+ \to D^- \mu^$ with nuclear β decay, others unique LHCb B⁻ $\rightarrow \pi^{+}\mu^{-}\mu^{-}$, u.I < 4.5x10⁻⁸ See A. Atre, T. Han, S. Pascoli, & B. Zhang [arXiv:0901.3589] #### Searches at higher masses CDF general search for like-sign dileptons [A. Abulencia et. al, Phys. Rev. Lett. 98, 221803 (2007)] CMS search for events with two isolated likesign leptons, hadronic jets & missing E_⊤ [arXiv:1104.3168] ATLAS [arXiv:1108.0366] If seen could also be interpreted in terms of other NP, ie. supersymmetery.... ## **New Exotic States** - Belle discovery of $Z_b(10610)$ and $Z_b(10650)$ - $\Upsilon(5S) \rightarrow \Upsilon(nS)\pi^+\pi^-$ Dalitz plots. See $\Upsilon(nS)\pi^\pm$ states - Also seen in $h_b(1P)\pi^{\pm}$ & $h_b(2P)\pi^{\pm}$ decays arXiv:1105.4583 #### **Lepton Flavor Violation** μ→eγ MEG data 2009 results (Mori EPS2011) Data 2010 Results Many limits on τ→ℓhh, Λh, Λ̄h, μγ, μh, 3μ, best limits near 10⁻⁸ (Belle, BaBar) #### **Future Acts** - LHCb Upgrade: run at 10³³ cm⁻²/s (x5), & double trigger efficiency on purely hadronic final states - Super B factories - Time scales are on the order of 6 years BES III, LHCb are happening now # Conclusions - Heavy Flavor physics is now very sensitive to potential New Physics effects at high mass scales - LHC experiments have shown their ability by already making world class 1st measurements of flavor physics. They are ready! - Heavy Flavor experiments are ready to search for and limit New Physics, especially in rare and CP violating b & c decays at the LHC with the 2011 data and beyond - Many other interesting flavor results have not been mentioned – apologies # The Sud # D° a_{sl} - Separate into B_d and B_s samples using impact parameter of muons - Find $$a_{\rm sl}^d = (-0.12 \pm 0.52)\%,$$ $a_{\rm sl}^s = (-1.81 \pm 1.06)\%.$ 0.04 #### New b-Baryon Decays # X(4140)? In B⁻→J/ψφ K⁻ decays, CDF reported a narrow structure in m(J/ψφ) mass [arXiv:1101.6058] No signal evident in LHCb data #### Exp: $\mathcal{B}(B_s \to \mu^+ \mu^-)$ in NUHM1 - CMS discovery contours for H, A → τ⁺τ⁻ →jets (solid line), jet + μ (dashed), jet + e (dotted) using 30-60 fb⁻¹ - (From O. Buchmueller et al., arXiv:0907.5568) # $B^{\circ} \rightarrow \mu^{+}\mu^{-}$ In fact correlation between B_d & B_s μ⁺μ⁻could be crucial This can only be done with the LHCb Upgrade # ATLAS B σ's # Also D⁺, D_s, Λ_b # Extract B_s fractions - Crucial to set absolute scale for B_s rates, since not given by e⁺e⁻ machines. - Must correct for $B_s \rightarrow D^o K^+ X \mu \nu$, also $$\Lambda_b \rightarrow D^o p X \mu v$$ $$f_s / (f_u + f_d) = 0.136 \pm 0.004^{+0.012}_{-0.011}$$ ## B_s fraction - hadronic Also can use hadronic decays + theory ~35 pb⁻¹ $\sqrt{s} = 7$ TeV LHCb Preliminary Semileptonics: $f_s / f_d = 0.272 \pm 0.008^{+0.024}_{-0.022}$ # A_b Fraction Significant p_t dependence $$[f_{\Lambda_b}/(f_u + f_d)] = 0.401 \pm 0.019 \pm 0.106 - (0.012 \pm 0.0025 \pm 0.0012) \times p_t(\text{GeV})$$ In general agreement with CDF measured at $< p_t > \sim 10 \text{ GeV/c}$ $f_{\Lambda_b}/(f_u + f_d) = 0.281 \pm 0.012^{+0.011}_{-0.056}^{+0.011}_{-0.056}^{+0.011}$ ## $\sigma(pp \rightarrow b\bar{b}X)$ using 15 nb⁻¹ ■ b \rightarrow D⁰X μ - ν , D⁰ \rightarrow K- π +, ~280 events Infancy - In 2<η<6, (75.3±5.4±13.0) µb LEP frag \Rightarrow 284±20±49 µb - In 2<η<6, 89.6 μb Tevatron frag ⇒ 338±24±58 μb</p> - Also measured charm cross-section, ~20x b ## b xsect from b→J/ψX $$t_z = \frac{(z_{J/\psi} - z_{PV}) \times M_{J/\psi}}{p_z}$$ - Here use 5.2 pb⁻¹ - $\sigma = 288 \pm 4 \pm 48 \mu b$ # ATLAS σ from $b \rightarrow J/\psi X$ ATLAS also in agreement with FONLL for p_t>5 GeV/c ## CMS σ from $b \rightarrow X \mu \nu$ In all cases generally good agreement with NLO calculations, within large errors ## **CPV Time Evolution** In general with $A_f \equiv A(M \to f), \, \overline{A}_f \equiv A(\overline{M} \to f), \, \lambda_f = \frac{p}{q} \frac{A_f}{A_f}$ $$\Gamma(M(t) o f) = \mathcal{N}_f |A_f|^2 e^{-\Gamma t} \left\{ \frac{1 + |\lambda_f|^2}{2} \cosh \frac{\Delta \Gamma t}{2} + \frac{1 - |\lambda_f|^2}{2} \cos(\Delta M t) \right\}$$ See Nierste arXiv:0904.1869 [hep-ph] $$-\operatorname{Re}\lambda_f\,\sinh\frac{\Delta\Gamma\,t}{2}-\operatorname{Im}\lambda_f\,\sin\left(\Delta M\,t\right)\, \Biggr\}\,,$$ ■ For Bo, $\Delta\Gamma \approx 0$ $$\Gamma(M \to f) = N_f \left| A_f \right|^2 e^{-\Gamma t} \left(\frac{1}{2} \left(1 - \left| \lambda_f \right| \right) \cos(\Delta M t) - \operatorname{Im} \lambda_f \sin(\Delta M t) \right)$$ - if only 1 A_f $\Gamma(M \to f) = N_f |A_f|^2 e^{-\Gamma t} (1 \operatorname{Im} \lambda_f \sin(\Delta M t))$ - and a CP eigenstates $$a[f_{CP}(t)] = \frac{\Gamma(\overline{M} \to f_{CP}) - \Gamma(M \to f_{CP})}{\Gamma(\overline{M} \to f_{CP}) + \Gamma(M \to f_{CP})} = -2 \operatorname{Im} \lambda_f$$ BF11, Oct. 20, 2011 λ_f a function of V_{ij} in SM & thus to α,β or γ