Workshop on "Flavour in the era of LHC" First meeting, CERN, November 7–10, 2005

B physics prospects at the LHC .

Olivier Schneider

Olivier.Schneider@epfl.ch

Contents

Introduction

- Motivation, B physics strategy

Experiments at LHC

- Hadronic collider environment
- Acceptance, luminosity, pileup
- Trigger schemes and performance
- Tracking, PID (LHCb)

Expected physics performance

- Flavour tagging and $sin 2\beta$
- $-B_{s}$ mixing $(\Delta m_{s}, \Delta \Gamma_{s}, \phi_{s})$
- Other b \rightarrow s boxes and penguins \leq
- Measurements of $\boldsymbol{\gamma}$

Conclusion

See also LHC experimental talks in the parallel sessions of WG2:

→ B_s mixing: → B_s mixing: → $B \rightarrow K^{(*)}l^+l^-$: → Rare $\mu\mu$ decays: → $B_s \rightarrow \mu^+\mu^-$: → $B_s \rightarrow \mu^+\mu^-$: ↓. Fernandez (LHCb) P. Koppenburg (LHCb) N. Nikitine (ATLAS) T. Speer (CMS)

Consistency of CKM picture

□ B factories (BABAR & Belle) have done a superb job to constrain the unitarity triangle within the SM !

Motivation for continuing the game

SM cannot be the ultimate theory

— must be a low-energy effective theory of a more fundamental theory at a higher energy scale, expected to be in the TeV region (accessible at LHC !)

□ How can New Physics (NP) be discovered and studied ?

- NP models introduce new particles, dynamics and/or symmetries at the higher scale. These new particles could
 - be produced and observed as real particles at energy frontier machines (e.g LHC)
 - appear as virtual particles (e.g. in loop processes), leading to observable deviations from the pure SM expectations in flavour physics and CP violation

"Flavour in the era of the LHC" workshop, CERN

Strengths of indirect approach

□ Can in principle access higher scales and therefore see effect earlier:

- Third quark family inferred by Kobayashi and Maskawa (1973) to explain small CP violation measured in kaon mixing (1964), but only directly observed in 1977 (b) and1995 (t)
- Neutral currents (ν +N \rightarrow ν +N) discovered in 1973, but real Z discovered in 1983
- □ Can in principle also access the phases of the new couplings:
 - NP at TeV scale needs to have a "flavour structure" to provide the suppression mechanism for already observed FCNC processes → once NP is discovered, it is important to measure this structure, including new phases

Complementarity with the "direct" approach:

 If NP found in direct searches at LHC, B (as well as D, K) physics measurements will help understanding its nature and flavour structure

\Rightarrow this workshop to explore such complementarity

5

in quark flavor sector

Search strategies for NP

■ Measure FCNC transitions where NP may show up as a relatively large contribution, especially in b→s transitions which are poorly constrained by existing data: $-B_s$ oscillations (Δm_s) and B_s mixing phase (ϕ_s) $-b \rightarrow s\gamma, b \rightarrow sl^+l^-, B_{(s)} \rightarrow \mu\mu$ - Also: rare K and D decays, D⁰ mixing

Improve measurement precision of CKM elements

- Compare two measurements of the same quantity, one which is insensitive and another one which is sensitive to NP:
 - $\sin(2\beta)$ from $B^0 \rightarrow J/\psi K_S$ and $\sin(2\beta)$ from $B^0 \rightarrow \phi K_S$
 - γ from $B_{(s)} \rightarrow D_{(s)}K$ and γ from $B^0 \rightarrow \pi^+\pi^-$ and $B_s \rightarrow K^+K^-$
- Measure all angles and sides in many different ways
 - any inconsistency will be a sign of new physics

Single measurements with NP discovery potential

Precision CKMology, including NP-free determinations of angle γ

Most promising channels

B physics at LHC: (dis)advantages

	$e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\overline{B}$	pp→bbX (\sqrt{s} = 14 TeV, Δt _{bunch} =25	ns)	
	PEPII, KEKB	LHC (LHCb-ATLAS/CMS)		
Production σ_{bb}	1 nb	~500 µb		
Typical bb rate	10 Hz	100–1000 kHz		
bb purity	~1/4	$\sigma_{bb}/\sigma_{inel} = 0.6\%$ Trigger is a major issue !	$\mathbf{\hat{:}}$	
Pileup	0	0.5–5		
b-hadron types	$\begin{array}{c} B^{+}B^{-} (50\%) \\ B^{0}\overline{B}{}^{0} (50\%) \end{array}$	B^+ (40%), B^0 (40%), B_s (10%) B_c (< 0.1%), b-baryons (10%)		
b-hadron boost	Small	Large (decay vertexes well separated)		
Production vertex	Not reconstructed	Reconstructed (many tracks)		
Neutral B mixing	Coherent B ⁰ B ⁰ pair mixing	Incoherent B ⁰ and B _s mixing (extra flavour-tagging dilution)		
Event structure	BB pair alone	Many particles not associated with the two b hadrons	S	

LHC experiments

that will do B physics

"Flavour in the era of the LHC" workshop, CERN

9

B acceptance

oT of B-hadron

 10^{2}

10

-2

□ ATLAS/CMS:

- central detectors, $|\eta| < 2.5$
- will do B physics using high- p_{T} muon triggers, mostly with modes involving dimuon
 - purely hadronic modes triggered by tagging muon

LHCb:

- designed to maximize B acceptance (within cost and space constraints)
- forward spectrometer, $1.9 < \eta < 4.9$
 - more b hadrons produced at low angles
 - single arm OK since \overline{bb} pairs produced correlated in space
- rely on much softer, lower p_T triggers, efficient also for purely hadronic B decays

Luminosity and pileup

Pileup:

L = instantaneous luminosity

ATLAS B trigger

Full ATLAS trigger:

- LVL1: hardware, coarse detector granularity,
- LVL2: full granularity, LVL1 confirmation + partial rec., 10 ms processing
- EF (event filter): full event access, "offline" algorithms

Strategy for B physics trigger:

- High luminosity (> 2×10^{33} cm⁻²s⁻¹):
 - LVL1: dimuon, $p_T > 6 \text{ GeV/c}$ each
- Low luminosity (or end of) fills:
 - LVL1: add single muon, $p_{\rm T} > 6 - 8 \, {\rm GeV/c}$
 - LVL2: look for objects around muon
 - 2nd muon (with lower threshold) in muon Rol
 - Single e/γ or e^+e^- pair in EM RoI
 - Hadronic b decay products in Jet RoI

Trigger level	Total output rate	Output rate for B physics
LVL1	75 kHz	10–15 kHz
LVL2	2 kHz	1–1.5 kHz
EF	200 Hz	10–15 Hz

2 µs latency 1 s processing

Trigger to cover widest range of discovery physics (Higgs, SUSY, ...)

- Level 1: $3.2 \mu s$ buffer, $\rightarrow 100$ kHz (nominal)

- HLT (High-Level Trigger): 1s buffer, 40 ms processing, \rightarrow 100 Hz

B events:

- Level 1:
 - single μ (p_T> 14 GeV/c) or di- μ (p_T> 3 GeV/c each)
- HLT:

 Limited time budget → restrict B reconstruction to RoI around μ 	Trigger level	Total output rate (at startup)	Output rate relevant for B physics
or use reduced number of hits/track ($D_s\pi$)	Level 1	50 kHz	14 kHz (1μ) 0.9 kHz (2μ)
	HLT	100 Hz	~ 5 Hz of incl. b,c $\rightarrow\mu$ +jet + O(1 Hz) for each excl. B mode

LHCb trigger

Kick Trigger output rates and physics

Output rates:

- Rough guess at present (split between streams still to be determined)
- Large inclusive streams to be used to control

Output rate	Event type	Physics	
200 Hz	Exclusive B candidates	B (core program)	
600 Hz	High mass di-muons	J/ψ , b $\rightarrow J/\psi X$ (unbiased)	
300 Hz	D* candidates	Charm	
900 Hz	Inclusive b (e.g. b \rightarrow µ)	B (data mining)	

calibration and systematics (trigger, tracking, PID, tagging)

Charm physics possibilities (to be explored):

- Could trigger on 500M signal $D^* \rightarrow D^0(h^+h^-)\pi$ per year
- D⁰ mixing (x and y_{CP}) and CP violation in D⁰ \rightarrow K⁺K⁻
 - could reach SM levels or close
 - systematics ?

Expected LHCb tracking performance

Expected tracking performance

Mass resolutions		ATLAS	CMS	LHCb	
in MeV/c ²	$B_s \rightarrow \mu\mu$	80	46	18	
	$B_s \rightarrow D_s \pi$	46	—	14	
	$B_s \rightarrow J/\psi \phi$	38	32	16	without J/ ψ mass constraint
	$B_s \rightarrow J/\psi \phi$	17	13	8	with J/ψ mass constraint

LHCb particle ID performance

"Flavour in the era of the LHC" workshop, CERN

 $B_{(s)} \rightarrow h^+h^-$ modes

□ Clean separation of different B_(s)→hh modes: a unique feature of LHCb at hadron colliders

Neutral reconstruction at LHCb

Flavour tagging

		$\varepsilon \mathbf{D}^2 =$	$\epsilon(1-2w)^2$	in %
	Tag	LHCb	ATLAS	CMS (1999)
	Muon	1.0	0.7	(0.6)
	Electron	0.4	0.4	(0.5)
	Kaon	2.4	-	-
	Jet/vertex	1.0	1.8–2.1	(2.3)
	Same side	2.1	2.1–2.4	(2.2)
ÌI	LHCb:	0.1		•
	– Most po	owerful	tag is opp	posite ka
	- Combin	neural r	$\sim 0\% (B)$	s) or ~ 4
) (Compare 7	with:		pprodell
	– CDF/D	0 achiev	ved ~1.59	% (expec
	R facto	rias ach	iound 2	

$\sin(2\beta)$ with $B^0 \rightarrow J/\psi K_s$

Expected to be one of the first CP measurements:

- Demonstrate tagging performance and ability for CP physics
- Tagging systematics:
 - Extract tagging performance from control channels (e.g $B^+ \rightarrow J/\psi K^+$ and $B^0 \rightarrow J/\psi K^{*0}$ in this case)

- Sensitivity:

— Can also push further the search for

10

23

 $A_{CP}(t)$ (background subtracted)

B_s oscillations

□ Measurement of Δm_s is one of the first LHCb physics goals — Expect 80k $B_s \rightarrow D_s^- \pi^+$ events per year (2 fb⁻¹), average $\sigma_t \sim 40$ fs — S/B ~ 3 (derived from 10⁷ fully simulated inclusive bb events)

B_s oscillations

ϕ_s and $\Delta \Gamma_s$ from $B_s \rightarrow J/\psi \phi$, ...

 \square B_s \rightarrow J/ $\psi \phi$ is the B_s counterpart of B⁰ \rightarrow J/ ψ K_s:

- B_s mixing phase ϕ_s is very small in SM: $\phi_s = -\arg(V_{ts}^2) = -2\lambda\eta^2 \sim -0.04$
 - \Rightarrow sensitive probe for new physics
- $J/\psi \phi$ final state contains two vectors:
 - Angular analysis needed to separate CP-even and CP-odd
 - Fit for sin ϕ_s , $\Delta \Gamma_s$ and CP-odd fraction (needs external Δm_s)
- **Sensitivity** (at $\Delta m_s = 20 \text{ ps}^{-1}$):

- LHCb:

- 125k B_s \rightarrow J/ $\psi \phi$ signal events/year (before tagging), S/B_{bb} > 3 $\Rightarrow \sigma_{stat}(\sin \phi_s) \sim 0.031, \sigma_{stat}(\Delta \Gamma_s / \Gamma_s) \sim 0.011$ (1 year, 2 fb⁻¹)
- can also add pure CP modes such as $J/\psi\eta$, $J/\psi\eta$ ', $\eta_c\phi$ (small improvement)

 $\Rightarrow \sigma_{stat}(\sin \phi_s) \sim 0.013$ (first 5 years) \rightarrow will eventually cover down to \sim SM

- ATLAS:

- similar signal rate as LHCb, but $\sigma_{\text{stat}}(\sin \phi_{\text{s}}) \sim 0.14$ (1 year, 10 fb⁻¹)
- CMS:
 - > 50k events/year, sensitivity study in progress

 θ_{tr}

Exclusive $b \rightarrow s\mu^+\mu^-$

- □ Suppressed decays, SM BR ~ 10^{-6}
- Forward-backward asymmetry A_{FB}(s) in the μμ rest-frame is sensitive probe of New Physics:
 - Zero can be predicted at LO with no hadronic uncertainties, depends on Wilson coefficients

 $A_{FB}(s)$ for $B^0 \rightarrow K^{*0}\mu\mu$

SUSY 11 (C,<0, C,>0)

- SUSY1(C,<0)

SUSY 11 (C,>0, C,>0)

SUST LIC. A

0.4

0.2

Are 0

-0.2

$B_s \rightarrow \mu^+ \mu^-$

- Ury rare decay, sensitive to new physics:
 - BR ~ 3.5 × 10⁻⁹ in SM, can be strongly enhanced in SUSY
 - Current limit from Tevatron (CDF+D0): 1.5×10^{-7} at 95% CL
- LHC should have prospect for significant measurement, but difficult to get reliable estimate of expected background:
 - LHCb: Full simulation: 10M inclusive bb events + 10M b $\rightarrow\mu$, b $\rightarrow\mu$ events (all rejected)
 - ATLAS: 80k bb $\rightarrow \mu\mu$ events with generator cuts, efficiency assuming cut factorization
 - CMS: 10k b $\rightarrow\mu$, b $\rightarrow\mu$ events with generator cuts, trigger simulated at generator level, efficiency assuming cut factorization

	1 year	$B_s \rightarrow \mu^+ \mu^-$ signal (SM)	b→µ, b→µ background	Inclusive bb background	All backgrounds
LHCb	2 fb ⁻¹	17	< 100	< 7500	
ATLAS	10 fb ⁻¹	7	< 20		
CMS (1999)	10 fb ⁻¹	7	< 1		

- New assessment of ATLAS/CMS reach at 10³⁴ cm⁻²s⁻¹ in progress

"Flavour in the era of the LHC" workshop, CERN

$\gamma \text{ from } B_s \rightarrow D_s K$ lhow

"Flavour in the era of the LHC" workshop, CERN

 γ from $B_s \rightarrow D_s K$ LHCb

□ Fit the 4 tagged time-dependent rates:

- Extract $\phi_s + \gamma$, strong phase difference Δ , amplitude ratio
- $-B_{s} \rightarrow D_{s}\pi \text{ also used in the fit}$ to constrain other parameters (mistag rate, $\Delta m_{s}, \Delta \Gamma_{s} \dots$)
- $\Box \sigma(\gamma) \sim 14^{\circ} \text{ in one year}$ (if $\Delta m_s = 20 \text{ ps}^{-1}$)
 - expected to be statistically limited
 - 8-fold ambiguity can be resolved (\rightarrow 2-fold) if $\Delta\Gamma_s$ large enough, or using B⁰ \rightarrow D π together with U-spin symmetry (Fleischer)

$\gamma \text{ from } B^0 \rightarrow D^0 K^{*0}$ lings

□ Measure 6 decay rates (self-tagged + time-integrated):

- LHCb expectations for 2 fb⁻¹ (γ =65°, Δ =0)

Mode (+ cc)	Yield	S/B _{bb} (90%CL)	
$B^0 \rightarrow \overline{D}^0 (K^+\pi^-) K^{\star 0}$	3.4k	>2	$\rightarrow \sigma(\gamma) \sim 8^{\circ}$ in one year
$B^0 \rightarrow D^0 (K^- \pi^+) K^{\star 0}$	0.5k	> 0.3	
$\mathrm{B}^{0} \twoheadrightarrow \mathrm{D}^{0}_{\mathrm{CP}}(\mathrm{K}^{+}\mathrm{K}^{-}) \; \mathrm{K}^{\star 0}$	0.6k	> 0.3	

"Flavour in the era of the LHC" workshop, CERN

O. Schneider, November 7, 2005 31

$\gamma \text{ from } B^{\pm} \rightarrow DK^{\pm}$ LHCb

Weak phase difference = γ Magnitude ratio = $r_B \sim 0.15$

- New proposed clean measurement of γ for LHCb, based on ADS (Atwood, Dunietz, Soni) method:
 - Measure the relative rates of $B^- \rightarrow DK^-$ and $B^+ \rightarrow DK^+$ decays with neutral D's observed in final states such as:
 - $K^-\pi^+$ and $K^+\pi^-$, $K^-\pi^+\pi^-\pi^+$ and $K^+\pi^-\pi^+\pi^-$, K^+K^-
 - These depend on:
 - Relative magnitude, weak phase and strong phase between $B^- \rightarrow D^0 K^-$ and $B^- \rightarrow \overline{D}^0 K^-$
 - Relative magnitudes (known) and strong phases between $D^0 \rightarrow K^-\pi^+$ and $\overline{D}{}^0 \rightarrow K^-\pi^+$, and between $D^0 \rightarrow K^-\pi^+\pi^-\pi^+$ and $D^0 \rightarrow K^-\pi^+\pi^-\pi^+$
 - Can solve for all unknowns, including the weak phase $\boldsymbol{\gamma}$

\Box Candidate for LHCb's statistically most precise determination of γ

 $-\sigma(\gamma) \sim 5^{\circ}$ in one year ? To be studied during this workshop ... [also B \rightarrow D⁰K, with D⁰ \rightarrow K_s $\pi\pi$ Dalitz analysis]

γ from B⁰ $\rightarrow \pi^+\pi^-$ and B_s $\rightarrow K^+K^-$

□ For each mode, measure time-dependent CP asymmetry:

 $\rightarrow \sigma(\gamma) \sim 5^{\circ}$

 $A_{CP}(t) = A_{dir} \cos(\Delta m t) + A_{mix} \sin(\Delta m t)$

- A_{dir} and A_{mix} depend on mixing phase, angle γ , and ratio of penguin to tree amplitudes = d e^{i θ}

Exploit U-spin symmetry (Fleischer):

- Assume $d_{\pi\pi} = d_{KK}$ and $\theta_{\pi\pi} = \theta_{KK}$
- 4 measurements and 3 unknowns (taking mixing phases from other modes) \rightarrow can solve for γ
- LHCb expectations (one year):
 - $-26k B^0 \rightarrow \pi^+ \pi^-$
 - $-37k B_s \rightarrow K^+K^-$
 - Uncertainty from U-spin assumption
 - Sensitive to new physics in penguins

Conclusion

□ The hadronic flavour sector will surely contribute significantly to the overall LHC effort to find and study physics beyond the SM:

- New physics will be chased at LHC in loop B decays
 - A few superb (highly-sensitive) b→s observables are accessible:
 B_s mixing magnitude and phase, exclusive b→sµµ, B→µµ
 - Large phase space can already be covered with the first 10⁷ s of data
- LHCb will improve precision on CKM angles
 - Several γ measurements from tree decays only: $\sigma_{stat}(\gamma) \sim 2.5^{\circ}$ in 5 years
 - May reveal inconsistencies with other/indirect measurements after several years
- Looking forward to end of LHC machine installation and first collisions in 2007
 - LHCb aiming for complete detector at end of 2006, ready to exploit nominal luminosity from day 1
 - CMS aiming for complete detector in early 2008, ATLAS/CMS will contribute in specific areas mostly during the startup years

