CERN Scientific Policy Committee meeting December 10, 2007

Expected LHCb physics with first 2 years of data

Olivier Schneider (EPFL)

on behalf of the LHCb collaboration

Olivier.Schneider@epfl.ch

b production at LHC / LHCb

ATLAS/CMS

100 µb

-2

oT of B-hadron

 10^{2}

10

LHCb's challenge

 Exploit the huge b production cross section at the LHC

Concept:

LHCb

- maximize B acceptance
 - apply soft p_T triggers at Level-0 (lower than ATLAS/CMS)
 - forward spectrometer, 1.9 < |η| < 4.9 (15–300 mrad), since more b hadrons produced at low angles
- only single arm (due to cost constraints)
 - OK since $b\bar{b}$ pairs produced correlated in space
- LHCb interaction point displaced by ~11m with respect to nominal position at center of cavern
 - OK for 25 ns (or 75 ns) bunch crossings, otherwise special "displaced" bunches are needed

Pythia production cross section

LHCb

230 ub

eta of B-hadron

2

bb correlation

LHCb ГНСр

Luminosity at LHCb

□ Instantaneous luminosity:

- L tuneable by adjusting final beam focusing
- Pileup is an issue:
 - n = number of inelastic pp interactions occurring in the same bunch crossing
 - Poisson distribution with mean $<n> = L\sigma_{inel}/f$ where $\sigma_{inel} = 80$ mb and f = 30 MHz (non-empty BX rate)

- Choose to run at $<L> \sim 2 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$ (max. $5 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$)

- Clean environment: $\langle n \rangle = 0.5$
- Less radiation damage (VELO strips start at 8mm from beam)

- □ Integrated luminosity scenario:
 - 2008: < 0.1 fb⁻¹ ? (hope more of course)
 - $-2009: \sim 0.5 \text{ fb}^{-1}$ "-
 - 2010–: **~ 2 fb^{−1}/year**
 - If the experiment can cope, push average luminosity from 2×10³² towards 5×10³² cm⁻²s⁻¹

LHCb flavour physics program

Precision CP violation, rare B decays, and more ...

- Indirect search for New Physics (NP) in loop-induced decays
 - Measurement of $B_s \rightarrow \mu\mu$ decay
 - B mixing parameters, incl. B_s mixing phase
 - CPV in exclusive $b \rightarrow sss$ hadronic penguin decays
 - CPV in B decay amplitudes
 - Measurements of exclusive b→sl⁺l⁻ and b→sγ (i.e. chiral structure)
- Determination of weak phase difference between V_{ub} and V_{cb} (angle γ) using B-> DK tree decays
- Search for LFV in leptonic B decays
- NP search in charm sector (D mixing, CPV, rare decays)
- b-hadron spectroscopy, heavy quarkonia, …

 If NP found by ATLAS/CMS, LHCb provides complementary information
 by probing NP flavour structure

Otherwise,
 explore much
 higher scales
 than those reached
 by the direct search

See <u>http://www.cern.ch/lhcb-phys/DC04_physics_performance/</u> for expected sensitivities and documentation on some of the key LHCb measurements

The beast in its cage ... (waiting to be tamed)

SPC meeting

Kick VELO installation (Oct 30–31, 2007)

- Complete survey of all sub-detectors and structures
- □ Hardware position monitoring
 - info from stepping motors of VELO halves
 - RASNIK system for large OT structures
 - laser alignment system for RICH mirrors

□ Software alignment with tracks:

- Internal alignment ($O(10^3)$ alignable objects):
 - align VELO, IT, OT, RICH internally
- Global alignment (only few dof at each step):
 - Align the IT+OT wrt VELO
 - Align TT (not alignable internally) wrt VELO+IT+OT system
 - Align RICH, ECAL, HCAL, and Muon wrt tracking system

- ☆ Note: cosmics not adapted
 - Need beam1 halo, beam1-gas interactions, or beam-beam collisions
- Align tracking deviceswithout B field
 - Use ~1M min bias events (10 min at 2 kHz) + beam halo tracks
 - Select clean tracks
 - If needed, use calo for rough p estimate
- **2** Repeat with B field
 - Can apply p cut
 - Get final alignment; consistency check

Lнсь гнср

VELO alignment

Internal alignment in a half:

- Sensor in a module
 - < 2 µm in x, y
- Module in a half
 - Expect 1.3 µm in x, y and 0.12 mrad around z using 10⁵ tracks (in 5000 min bias events) + 2000 beam halo tracks

□ Relative alignment of VELO halves:

- Closed VELO: 2 methods
 - "overlap tracks", with hits in both halves
 - reconstructed primary vertexes (PV)
- Open VELO:
 - only PV method (with less stat.)

	x or y transl.	x or y rot.
300 overlap tracks	12 μm	36 µrad
1500 recons. PVs	28 μm	108 µrad

Test beam data: track residuals vs ϕ

Within requirements, in particular for the trigger

VELO test beam

Momentum measurement

Momentum resolution:

- $-\sigma_{p}/p = 0.35\% 0.55\%$ depending on p
- IT and OT alignment important to avoid degradation:
 - e.g IT box aligned to $\sigma = 5$ (50) μ m and $\sigma = 0.1$ (0.2) mrad in x and y (z)
 - Degradation of 10 MeV/c² J/ $\psi \rightarrow \mu\mu$ mass resolution as a function of IT box misalignment

□ Momentum calibration:

- Full 3D B-field map at startup (both polarities):
 - Parametrized using measurements (Dec 2005) checked against TOSCA simulation
 - Expected rel. precision: few 10⁻³
- Check/refine with systematic mass studies:
 - Value of J/ψ mass vs momentum, etc ...
 - Use also less abundant dimuon mass peaks
 (ψ(2S), Υ) and hadronic mass peaks (K_S, φ, Λ, D, B, ...)

Minimum bias events:

- e.g. 10^8 events in ~20 hours at 2×10^{28} cm⁻²s⁻¹ with interaction trigger
- First look at 14 TeV data: everything new !
 - (Ratio of) multiplicities vs η , pT, ϕ of charged tracks (+/–, $\pi/K/p$)
 - Reconstruction and production studies of K_S , Λ , ϕ , D, ...

Trigger

Two stages:

- -L0 = Level 0 (hardware, max. output rate = 1 MHz):
 - Info from pileup system, ECAL, HCAL and MUON: select minimum p_T h, $\mu,$ e, $\gamma,$ π^0
- **HLT =** High Level Trigger (software, after full readout, ~2 kHz output rate):
 - Several trigger lines: μ , μ +h, h, ECAL, ...(start with L0 confirmation)
 - Then inclusive and exclusive selections (full B decay chains)

Early running scenarios:	Lumi	nr-bunches	pp-int/xing	non-empty rate	L0-YES
Start with lagge I.0	$1.1 imes 10^{29}$	* 4	0.15	6 kHz	3 kHz
- Start with loose LU	$2.3 imes10^{30}$	* 16	0.76	94 kHz	47 kHz
 Until saturation 	$2.6 imes10^{31}$	936(75 ns)	0.15	1.4 MHz	0.7 MHz
of output rate at	$2.0 imes10^{32}$	2622 (25 ns)	0.4	10 MHz	1 MHz

- No HLT active until $\sim 10^{29}$ cm⁻²s⁻¹

 $\sim 2 \times 10^{31} \text{ cm}^{-2} \text{s}^{-1}$

- Check/debug L0 and L0 confirmation
- Understand/fix crucial distributions ($\sigma(p)$, $\sigma(p_T)$, $\sigma(IP)$, ...), compare with offline and MC
- Test/adjust selections, i.e. background rejection and CPU timing
 - no signal needed at this stage, use abundant bkg data (instead of limited MC samples)

* NB: LHCb will only get collisions with "displaced" bunches

Muon ID calibration

All rates quoted at nominal luminosity

 $B_s \rightarrow \mu^+ \mu^-$

 $\overline{\mathbf{S}}$

 \mathbf{W}^{\pm}

- Very rare loop decay, sensitive to new physics:
 - $-BR_{SM} = (3.55 \pm 0.33) \times 10^{-9}$
 - Can be strongly enhanced in SUSY:
 - e.g. current measurement of g_μ-2 suggests gaugino mass between 250 and 650 GeV/c²
 - $\Rightarrow BR(B_s \rightarrow \mu^+\mu^-) \text{ up to } 100 \times 10^{-9}$ within the CMSSM for high tan β
 - Current 90% CL limits:
 - $47 \times 10^{-9} = 13 \times BR_{SM}$ (CDF, 2 fb⁻¹, prel)
 - $75 \times 10^{-9} = 21 \times BR_{SM}$ (D0, 2 fb⁻¹, prel)

LHCh

• "Easy" for LHCb to trigger and select

- Large total efficiency (10%)
- Main issue is background rejection
 - study based on limited MC statistics
 - largest background is $b \rightarrow \mu$, $b \rightarrow \mu$
 - specific background dominated by $B_c \rightarrow J/\psi(\mu\mu)\mu\nu$
- Exploit good detector performance:
 - muon ID
 - vertexing (topology)
 - mass resolution (18 MeV/ c^2)

0.05 fb⁻¹ \Rightarrow overtake CDF+D0 **0.5** fb⁻¹ \Rightarrow exclude BR values down to SM $fb^{-1} \Rightarrow 3\sigma$ evidence of SM signal 2 6

LHCb's best NP discovery potential with the very early data !

Kack Particle ID performance with RICH

RICH PID calibration

B vs \overline{B} flavour tagging

Several tags:

- Opposite side (OS): electron, muon, kaon, vertex charge

50

40

30

20

10

4.6

- Same side (SS): pion (B^0) or kaon (B_s)
 - most powerful tags: SS kaon and OS kaon
- Expected combined performance on triggered and selected MC events:
 - $\epsilon D^2 = \epsilon (1-2w)^2 = 4-5\%$ for B^0
 - $\epsilon D^2 = \epsilon (1-2w)^2 = 7-9\%$ for B_s
- Using data:
 - Reconstruct and select several control samples
 - High-statistics flavour-specific
 B decay modes
 - Look at tags one by one:
 - assess performance (mistag rate w)
 - tune tag selection

Kick Control of tagging and proper time

ps

0.02

Entries

- Extraction of flavour mistag probabilities:
 - Opposite-side tags:
 - $\sigma(w_{OS})/w_{OS} \sim 1-2\%$ with 0.1 fb⁻¹
 - Use B⁺ control samples (counting)
 - Use B⁰ control samples (fit of time-dependence)
 - Same-side kaon tag:
 - $\sigma(w_{SS})/w_{SS} \sim 6\%$ with 0.1 fb⁻¹
 - Use B_s control samples
 (double tagging method, fit of time-dependence)
 - Warning:
 - Tagging can be biased by trigger & selection
 - Can only compare two samples with same bias b
- "Control" physics measurements:
 - Demonstrate time-dependent CP physics capability on 0.1–0.5 fb⁻¹ of data with measurements of well-known observables:
 - Specific b-hadron lifetimes, Δm_d , $\sin(2\beta)$, Δm_s

LHCb

B_s mixing phase ϕ_s wrt b \rightarrow ccs

- $\Box \phi_s = -2\beta_s$ is the strange counterpart of $\phi_d = 2\beta$
 - $\ \varphi_s$ very small in SM
 - $\phi_s^{SM} = -\arg(V_{ts}^2) = -2\lambda^2\eta = -0.0368 \pm 0.0018$
 - Could be much larger in presence of New Physics
- □ Golden b→ccs mode is $B_s \rightarrow J/\psi \phi$:
 - Single decay amplitude
 - Angular analysis needed to separate CP-even and CP-odd contributions

□ Current experimental situation:

- No evidence of CP violation found
- D0 result (1.1 fb⁻¹, ~1k B_s \rightarrow J/ $\psi \phi$)
 - φ_s = -0.79 ±0.56 +0.14-0.01 [PRL 98, 121801 (2007)]
- □ LHCb sensitivity with 0.5 fb⁻¹:

 $\sigma_{stat}(\phi_s) = 0.046$

~33k B_s →J/ψ(µµ)φ events (before tagging), B_{bb}/S = 0.12, σ_t = 36 fs

$$\begin{aligned} \text{Time-dependent CP asymmetry:} \\ A_{CP}(t) &= \frac{\Gamma\left(\overline{B}_{s}^{0}(t) \rightarrow f\right) - \Gamma\left(B_{s}^{0}(t) \rightarrow f\right)}{\Gamma\left(\overline{B}_{s}^{0}(t) \rightarrow f\right) + \Gamma\left(B_{s}^{0}(t) \rightarrow f\right)} \end{aligned}$$

For a final state f with CP eigenvalue η_f : $A_{CP}(t) = \frac{-\eta_f \sin \phi_s \sin(\Delta m_s t)}{\cosh(\Delta \Gamma_s t/2) - \eta_f \cos \phi_s \sinh(\Delta \Gamma_s t/2)}$

• Eventually:

- Add also pure CP modes $(J/\psi\eta^{(')}, \eta_c \phi, D_s D_s)$
- With 10 fb⁻¹, obtain >3 σ evidence of CP violation ($\phi_s \neq 0$), even if only SM

Constraints on New Physics in B_s mixing from ϕ_s measurement

LHCb B physics examples with 0.5 fb⁻¹

Decay mode	0.5 fb ⁻¹ yield	0.5 fb ^{–1} stat. sensitivity	Rough stat. break-even point with competition *	* Assuming naive $1/\sqrt{N}$ scaling of stat.	
$B_d \rightarrow J/\psi(\mu\mu)K_S$	59k	$\sigma(\sin(2\beta)) = 0.04$	2 fb ⁻¹	uncertainty of existing results at Tevatron (\rightarrow 16 fb ⁻¹) or current B factories (\rightarrow 1.75 ab ⁻¹)	
$B_s \rightarrow D_s^- \pi^+$	35k	$\sigma(\Delta m_s) = 0.012 \text{ ps}^{-1}$	$0.2 { m ~fb^{-1}}$		
$B_s \rightarrow D_s^- K^{\pm}$	1.6k	$\sigma(\gamma) = 21 \text{ deg}$	-		
$B_s \rightarrow J/\psi(\mu\mu)\phi$	33 k	$\sigma(\phi_s) = 0.046$	0.3 fb⁻¹		
$B_d \rightarrow \phi K_S$	230	$\sigma(\sin(2\beta_{\rm eff})) = 0.46$	8 fb ⁻¹		
$B_s \rightarrow \phi \phi$	780	$\sigma(\Delta \phi^{\rm NP}) = 0.22$	-		
B ⁺ → D(hh)K [±] B ⁺ → D(K _s ππ)K [±]	16k 1.3k	$\sigma(\gamma) = 12 - 14 \text{ deg}$	0.3 fb ⁻¹	 For many measurements based on B_s, or untagged B⁰, B⁺ decays only few 0.1 fb⁻¹ are necessary to produce the world's best 	
$B_d \rightarrow \pi^+\pi^-$	8.9k	$\sigma(S, C) = 0.074, 0.086$	1-2 fb ⁻¹		
$B_s \rightarrow K^+K^-$	9.0k	$\sigma(S, C) = 0.088, 0.084$	—		
$B_d \rightarrow Q\pi \rightarrow \pi^+\pi^-\pi^0$	3.5k	α	2 fb ⁻¹		
$B_d \rightarrow K^{*0}\gamma$	15k	A _{CP}	$0.4 { m ~fb^{-1}}$		
$B_s \rightarrow \phi \gamma$	2.9k	A _{CP} (t)	-		
$B_d \rightarrow K^{*0} \mu^+ \mu^-$	1.8k	$\sigma(q_0^2) = 0.9 \text{ GeV}^2$	$0.1 { m ~fb^{-1}}$		
$B_s \rightarrow \mu^+ \mu^-$	18	BR _{SM} at 90%CL	0.05 fb ⁻¹	results	

Conclusion

Startup:

- First beam (clockwise, please !) and first collisions with LHCb magnet off:
 - Establish running procedure, check/adjust time alignment
 - Exercise reconstruction software on real data, align detector in space
- First collisions with magnet on (+ second polarity, once possible):
 - Calibrate momentum, energy, PID, ... + check alignment
 - Study crucial distributions (resolutions, ...) and **commission trigger**
 - Exercise computing model with real data (use of Tier1 centers + Grid analysis)
 - Want/push to get 25ns bunch-spacing and 2×10^{32} cm⁻²s⁻¹ as soon as possible

Physics:

- Early bread-and-butter measurements (e.g. J/ ψ production, σ_{bb} , ...)
- Most "core physics" to be started already with 0.1–0.5 fb^{-1}
- Search for new physics starts immediately with highly promising and competitive results to get out asap, e.g.

