10			101
	n	10	191

LHCb status report

Marco Adinolfi on behalf of the LHCb collaboration

University of Bristol

4 December 2013

• • • • • • • • • • • • •

LHCb in LS1

LHCb Upgrade

Conclusions

Outline

3 + 4 = +

LHCb in LS1

LHCb Upgrade

Conclusions

Outline

- Physics@LHCb
- 3 LHCb Upgrade
- 4 Conclusions

Physics@LHCb

LHCb Upgrade

Conclusions

The LHCb detector

Physics@LHCb

LHCb Upgrade

Conclusions

The LHCb detector

Physics@LHCb

LHCb Upgrade

Conclusions

LHCb in a nutshell

TRACKING $\Delta p/p = 0.4 - 0.6\% \text{ at 5-100 GeV}$ $\int_{0}^{0} \int_{0}^{0} \int_{0}^$

PID

 ϵ (K \rightarrow K) \sim 95% ϵ (π \rightarrow K) \sim 5% Phys. Lett. B723 (2013) 44-53

CALO

 $\sigma_E/E \sim 10\%/\sqrt{E} \oplus 1\% - ECAL$ $\sigma_E/E \sim 70\%/\sqrt{E} \oplus 10\% - HCAL$ Nucl. Phys. B 874 (2013) 663-678

MUON

 $\epsilon(\mu \to \mu) \sim$ 97% $\epsilon(\pi \to \mu) \sim$ 1 – 3% Phys. Lett. B 725 (2013) 15-24

イロト イ理ト イヨト イヨト

Physics@LHCb

LHCb Upgrade

Conclusions

LHCb in a nutshell

CALO

 $\sigma_E/E \sim 10\%/\sqrt{E} \oplus 1\% - ECAL$ $\sigma_E/E \sim 70\%/\sqrt{E} \oplus 10\% - HCAL$ Nucl. Phys. B 874 (2013) 663-678

MUON

 $\epsilon(\mu \to \mu) \sim$ 97% $\epsilon(\pi \to \mu) \sim$ 1 – 3% Phys. Lett. B 725 (2013) 15-24

イロト イ理ト イヨト イヨト

LHCb Upgrade

LHCb in a nutshell

LHCb Upgrade

Conclusions

LHCb in a nutshell

Marco Adinolfi

Physics@LHCb

LHCb Upgrade

Conclusions

LS1 Status

- LS1 program achieved so far:
 - Significant consolidation of infrastructure: powering, cooling, gas.
 - Maintainance, repair and consolidation work for MUON, OT, IT and TT.
 - Two months delay in magnet consolidation because of procurement and technical difficulties - work ongoing.
 - 610 IMPACT work packages.
 - 350 visits, 4050 visitors (w-o open days).
- Program for 2014:
 - Exchange of part of the RICH1 and RICH2 HPD.
 - ECAL monitoring system exchange.
 - Continuation of MUON consolidation.
 - Reinstallation of the vacuum chamber with lighter supports foreseen for June.
- Conclusion:
 - The work is progressing as expected.
 - Expected to be completed in 2014 as scheduled.

Magnet consolidation

M2-M5 maintainance 🚊 🗠 🔍

Physics@LHCb

LHCb Upgrade

Conclusions

HLT splitting

- Software trigger performed in 2 steps: HLT1 and HLT2.
- HLT2 processes only events passing HLT1: it has a lower input rate and can run more time consuming code.
- So far HLT1 and HLT2 run in a single process.

イロト イポト イヨト イヨト

Physics@LHCb

LHCb Upgrade

Conclusions

HLT splitting

- Completely separate the HLT1 and HLT2 steps in 2 different processes.
- Allows fully deferring HLT2 and perform online detector alignment/calibration before running it.

LHCb in LS1	
-------------	--

LHCb Upgrade

Conclusions

Computing news

- Re-stripping of 2011 and 2012 data
 - Bug fixes and new selection criteria added.
 - One more round foreseen for early 2014.

 Computing model updated and new document released with the other experiments.

イロト イポト イヨト イヨト

LH	Cb	in	LS1	

LHCb Upgrade

Conclusions

Outline

- Physics@LHCb
- 3 LHCb Upgrade
- 4 Conclusions

LHCb Upgrade

LHCb physics output

May 01

Jun 01 Jul 01 Aug Sep Oct Nov Dec

date

01 01 01 01 01

Feb Mar Apr

01 01 01

LHCb in LS1

LHCb Upgrade

Conclusions

Recent LHCb papers

Measurement of $D^0 - \overline{D}^0$ mixing parameters and search for CP violation	arXiv:1309.6534
using $D^0 o K^+ \pi^-$ decays	
Observation of $\bar{B}^0_{(s)} \rightarrow J/\psi f_1(1285)$ decays and measurement of the	arXiv:1310.2145
f ₁ (1285) mixing angle	
Search for the decay $D^0 o \pi^+\pi^-\mu^+\mu^-$	arXiv:1310.2535
Search for the doubly charmed baryon Ξ_{cc}^+	arXiv:1310.2538
Measurement of CP violation in the phase space of $B^{\pm} \rightarrow K^{+}K^{-}\pi^{\pm}$	arXiv:1310.4740
and $B^\pm o \pi^+\pi^-\pi^\pm$ decays	
Measurements of indirect CP asymmetries in $D^0 o K^- K^+$ and $D^0 o$	arXiv:1310.7201
$\pi^-\pi^+$ decays	
Search for CP violation in the decay $D^+ o \pi^- \pi^+ \pi^+$	arXiv:1310.7953
Study of forward Z+jet production in pp collisions at $\sqrt{s} = 7$ TeV	arXiv:1310.8197
Studies of beauty baryon decays to D^0ph^- and $\Lambda_c^+h^-$ final states	arXiv:1311.4823

æ

イロト イヨト イヨト イヨト

Exploit the interference between mixing and doubly-Cabibbo suppressed decay amplitudes.

Assuming the mixing parameters $|x|, |y| \ll 1$ and no CP violation:

$$R(t) = \frac{N_{WS}(t)}{N_{RS}(t)} = R_D + \sqrt{R_D}y't + \frac{x'^2 + y'^2}{4}t^2$$

where x' and y' are a linear combination of x and y.

イロト イ団ト イヨト イヨト

Most systematics cancel in the ratio, remaining accounted for in the time dependent fit.

Impact of LHCb results on D^0 mixing

HFAG average before LHCb results

HFAG average after LHCb results

< ロ > < 同 > < 回 > < 回 > < 回 > <

크

Search for CP violation in the decay $D^+ o \pi^- \pi^+ \pi^+$

- 3-body decays have rich resonance structures with interfering amplitudes modulated by strong-phase variations across the phase-space.
- Search of localized asymmetries can provide information on CPV.
- Study the Cabibbo suppressed $D^+ \rightarrow \pi^- \pi^+ \pi^+$ decay.
- Use $D_s^+ \to \pi^- \pi^+ \pi^+$ as control channel.

Binned method

Measure the significance S^i_{CP} of the difference of D^+ and D^- in bins of the Dalitz plot.

Unbinned method

kNN nearest neighbor to compare D^+ and D^- Dalitz plot distributions.

< ロ > < 同 > < 回 > < 回 > < 回 > <

- Data selection common to both methods.
- Analysis carried out on 1 fb⁻¹ data.

- In absence of localized asymmetries *S_{CP}* follows a Gaussian distribution.
- CPV can be detected as a deviation.
- All results show statistical agreement between the D⁺ and D⁻ samples.

- kNN method applied with 2 possible region definitions.
- The p-values for the CPV hypothesis are all above 20% consistent with no CP asymmetry.

Image: A matrix and a matrix

- 1.0 fb⁻¹ from 2011.
- $N(\pi\pi\pi) = 4904 \pm 148 A_{raw} = 0.124 \pm 0.020$
- $N(KK\pi) = 1870 \pm 133 A_{raw} = -0.143 \pm 0.040$

•
$$A_{CP} = A_{raw} - A_D - A_P$$

- $A_P(B^{\pm})$ measured from $B^{\pm} \rightarrow J/\psi K^{\pm}$
- A_D previously measured by LHCb: PLB713 (2012) 186

 $\begin{aligned} A_{CP}(\pi\pi\pi) &= 0.117 \pm 0.021(\textit{stat}) \pm 0.009(\textit{sys}) \pm 0.007(\textit{J}/\psi\textit{K}) \ 4.9\sigma \\ A_{CP}(\textit{KK}\pi) &= -0.141 \pm 0.040(\textit{stat}) \pm 0.018(\textit{sys}) \pm 0.007(\textit{J}/\psi\textit{K}) \ 3.2\sigma \end{aligned}$

Dac

- s s̄ resonant contribution strongly suppressed for B[±] → K⁺K[−]π[±].
- Asymmetries not uniformly distributed.
- A very large negative asymmetry is localized in the low K⁺K⁻ invariant mass region: m²_{K⁺K⁻} < 1.5 GeV²/c⁴.
- A large positive asymmetry is measured for $m_{\pi\pi \rm low}^2 < 0.4 \, {\rm GeV^2}/c^4$ $m_{\pi\pi \rm high}^2 > 15 \, {\rm GeV^2}/c^4$:

 $\begin{aligned} A_{CP}(\pi\pi\pi\,\mathrm{local}) &= 0.584 \pm 0.082(\textit{stat}) \pm 0.027(\textit{sys}) \pm 0.007(\textit{J}/\psi\,\textit{K}) \\ A_{CP}(\textit{KK}\pi\,\mathrm{local}) &= -0.648 \pm 0.070(\textit{stat}) \pm 0.013(\textit{sys}) \pm 0.007(\textit{J}/\psi\,\textit{K}) \end{aligned}$

- Evidence of large direct CP violation observed.
- Interference between intermediate states does not seem to justify the results for $B^{\pm} \rightarrow K^+ K^- \pi^{\pm}$.

Large sample of $B^0_{(s)} \rightarrow J/\psi \pi \pi \pi \pi$ identified in 3 fb⁻¹ data.

$$N_{ar{B}^0_s} = 1197 \pm 41$$

 $N_{ar{B}^0} = 836 \pm 39$

• Clear signals at 1285 MeV/c^2 with structure at higher mass.

• Angular distribution of J/ψ studied to probe the spin of the four-pion state

First observation of $f_1(1285)$ in b-hadron decays.

 $\begin{array}{l} \frac{\mathcal{B}(\vec{B}_{S}^{0} \rightarrow J/\psi \, f_{1}(1285))}{\mathcal{B}(\vec{B}_{S}^{0} \rightarrow J/\psi \, \pi^{+} \pi^{-})} = (3.82 \pm 0.52 \substack{+0.29\\-0.32})\% \\ \frac{\mathcal{B}(\vec{B}^{0} \rightarrow J/\psi \, \pi^{+} \pi^{-})}{\mathcal{B}(\vec{B}^{0} \rightarrow J/\psi \, \pi^{+} \pi^{-})} = (2.32 \pm 0.54 \pm 0.11)\% \\ \frac{\mathcal{B}(\vec{B}^{0} \rightarrow J/\psi \, f_{1}(1285))}{\mathcal{B}(\vec{B}_{S}^{0} \rightarrow J/\psi \, f_{1}(1285))} = (11.6 \pm 3.1 \substack{+0.7\\-0.8})\% \end{array}$

Assuming $f_1(1285)$ is a mixed $q \overline{q}$ state the mixing angle Φ is measured:

$$|f_1(1285)\rangle = \cos \Phi \frac{|u\bar{u}\rangle + |dd\rangle}{\sqrt{2}} - \sin \Phi |s\bar{s}\rangle \quad ; \quad \Phi = \pm (24.0^{+3.1+0.6}_{-2.6-0.8})^{\circ}$$

Studies of beauty baryon decays...

• Study $\Lambda_c^+\pi^-$, $\Lambda_c^+K^-$, $D^0p\pi^-$, and D^0pK^- spectra.

Marco Adinolfi

• Measure yields of Ξ_b and Λ_b both in Cabibbo favored and Cabibbo suppressed channels:

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Studies of beauty baryon decays...

- Efficiency calculated separately for selection, PID and phase-space.
- PID efficiency is data driven as much as possible, remaining components measured from simulation

- Non zero spin particles involved in initial and final states.
- Angular corrections found to be negligible.

Studies of beauty baryon decays...

• First observation of $\Xi_b \rightarrow D^0 p K^-$ and of $\Lambda_b \rightarrow D^0 p K^-$

•
$$m_{\Xi_b} - m_{\Lambda_b} = 174.8 \pm 2.4 \pm 0.5 \,\mathrm{MeV}/c^2$$

•
$$m_{\Xi_b} = 5794.3 \pm 2.4 \pm 0.7 \, \text{MeV}/c^2$$

$$\begin{split} R_{A_{b}^{0}\rightarrow D^{0}p\pi^{-}} &\equiv \frac{\mathcal{B}(A_{b}^{0}\rightarrow D^{0}p\pi^{-})\times\mathcal{B}(D^{0}\rightarrow K^{-}\pi^{+})}{\mathcal{B}(A_{b}^{+}\rightarrow pK^{-}\pi^{+})} = 0.0806\pm 0.0023\pm 0.0035,\\ R_{A_{b}^{0}\rightarrow D^{0}pK^{-}} &\equiv \frac{\mathcal{B}(A_{b}^{0}\rightarrow D^{0}pK^{-})}{\mathcal{B}(A_{b}^{0}\rightarrow D^{0}p\pi^{-})} = 0.073\pm 0.008^{+0.005}_{-0.006},\\ R_{A_{b}^{0}\rightarrow D^{0}pK^{-}} &\equiv \frac{\mathcal{B}(A_{b}^{0}\rightarrow D^{0}pK^{-})}{\mathcal{B}(A_{b}^{0}\rightarrow A_{c}^{+}\pi^{-})} = 0.073\pm 0.0016\pm 0.0016\pm 0.0016,\\ R_{\Xi_{b}^{0}\rightarrow D^{0}pK^{-}} &\equiv \frac{f_{\Xi_{b}^{0}}\times\mathcal{B}(\Xi_{b}^{0}\rightarrow D^{0}pK^{-})}{f_{A_{b}^{0}}\times\mathcal{B}(A_{b}^{0}\rightarrow D^{0}pK^{-})} = 0.44\pm 0.09\pm 0.06,\\ R_{\Xi_{b}^{0}\rightarrow A_{c}^{0}K^{-}} &\equiv \frac{\mathcal{B}(\Xi_{b}^{0}\rightarrow A_{c}^{0}K^{-})}{\mathcal{B}(\Xi_{b}^{0}\rightarrow D^{0}pK^{-})\times\mathcal{B}(D^{0}\rightarrow K^{-}\pi^{+})} = 0.57\pm 0.22\pm 0.21, \end{split}$$

|--|

LHCb Upgrade

Outline

1 LHCb in LS1

- 3 LHCb Upgrade

크

イロト イヨト イヨト イヨト

Physics@LHCb

LHCb Upgrade

Conclusions

Why an upgrade?

Expected precisions on several Heavy Flavour related quantities from ECFA workshop, Aix-les-Bain Octobr 2013.

LHCb upgrade more sensitive than competition for key flavour physics observables

Physics@LHCb

LHCb Upgrade

Conclusions

LHCb Upgrade

• Luminosity: $2 \times 10^{33} \text{cm}^{-2} \text{s}^{-1}$

• 40 MHz readout with software base trigger running on a PC farm.

イロン イ理 とくほとく ほ

Physics@LHCb

LHCb Upgrade

Conclusions

LHCb Upgrade TDR's

Marco Adinolfi

LHCb in LS1	Physics@LHCb	LHCb Upgrade	Conclusions
RICH optical of	design		
	- Congri		
z (mm)	2000	1000 1500	2000 z (mm)

- Overall structure still based on 2 detectors
- Remove aerogel from RICH 1 → reduced maximum ring size and increase of Cherenkov photons by about 15%.
- Focal length of spherical mirrors increased by a $\approx \sqrt{2} \implies$ halved occupancy and reduced aberration.
- Tilt of spherical mirrors reduced \implies reduced aberration.

Physics@LHCb

LHCb Upgrade

Conclusions

RICH PD & performance

- Baseline R11265 Hamamatsu MaPMT.
- 8×8 pixel, 26.2 mm square device.

- $\bullet~3.9\times10^{32}\,{\rm cm}^{-2}{\rm s}^{-1}$ current geometry
- $10.0 \times 10^{32} \, \mathrm{cm}^{-2} \mathrm{s}^{-1}$ current geometry
- $20.0 \times 10^{32} \, \mathrm{cm}^{-2} \mathrm{s}^{-1}$ current geometry
- $\bullet~20.0\times10^{32}\,\mathrm{cm}^{-2}\mathrm{s}^{-1}$ updated geometry

	LHCb in LS1	Physics@LHCb	LHCb Upgrade	Conclusions
Cal	orimeter			

- Maintain the same photo-multipliers: reduce gain by factor 5 to increase their lifetime.
- Change in electronics to compensate the reduced gain. ۰
- Degradation with radiation will require replacement of the innermost part of FCAL.

	LHCb in LS1	Physics@LHCb	LHCb Upgrade	Conclusions
MU	ON			

- New off-detector electronics with 40 MHz readout.
- Removal of station M1.
- Additional shielding around the beam pipe in front of M2.
- Change in identification algorithm needed to recover increased misidentification.

Physics@LHCb

LHCb Upgrade

Conclusions

VELO requirements

Physics performance

- Fast and robust reconstruction with excellent IP resolution at $20.0 \times 10^{32} \, {\rm cm}^{-2} {\rm s}^{-1}$.
- $\bullet\,$ First measured point as close as possible to interaction point: \Longrightarrow as close to the beam as $\pm\,$ 5.1 $\,$ mm.
- Material in acceptance kept at minimum.
- Geometric acceptance > 99% for track within $\pm 2\sigma_{lumi} = \pm 126 \text{ mm}$.

Sensors

- Hottest sensor exposed to fluence of 8 × 10¹⁵1 MeVn_{eq}cm⁻² after 50 fb⁻¹.
- Must be able to withstand 1000 V.
- Will be kept at < -20 °C.</p>

ASIC

- Output rate up to 15.1 Gbit/s.
- Power consumption ≤ 3 W.

LHCb Upgrade

Conclusions

VELO performance: pattern recognition

- $B^0 \to K^{\star 0} \mu^+ \mu^-$ events at $\mathcal{L} = 20.0 \times 10^{32} \, \mathrm{cm}^{-2} \mathrm{s}^{-1}$.
- Improved efficiency and ghost rate compared to current VELO.
- Flatter efficiency over *p*, *p*_T, η, φ...
- Comparison between current (black) and upgraded (red).

・ロト・日本・日本・日本・日本・日本

Physics@LHCb

LHCb Upgrade

Conclusions

VELO performance: primary vertex and IP

• $B^0 \rightarrow K^{\star 0} \mu^+ \mu^-$ events at $\mathcal{L} = 20.0 \times 10^{32} \, \mathrm{cm}^{-2} \mathrm{s}^{-1}$.

Marco Adinolfi

- PV and IP resolution after full reconstruction.
- Intercept of IP resolution vs 1/p_T similar for current (black) and upgraded (red). Slope reduced significantly.

LHCb status report

|--|

LHCb Upgrade

Conclusions

Outline

1 LHCb in LS1

- Physics@LHCb
- 3 LHCb Upgrade

크

イロト イヨト イヨト イヨト

	LHCb in LS1	Physics@LHCb	LHCb Upgrade	Conclusions
or	nclusions			

- LHCb continues to produce a wealth of high-quality physics results.
- Full dataset of 3 fb⁻¹ not yet fully exploited.
- At the same time work is in progress to prepare for Run 2.
- VELO and PID TDR submitted to LHCC: major milestones on upgrade for achieved.