#### HCD Status 102<sup>nd</sup> LACC meeting 07.07.2010

data taking and detector status
 appetizer for summer
 conference physics results



Stephanie Hansmann-Menzemer PI Heidelberg

for the LHCb collaboration

### LHCb: Precision B Physics Experiment



- + dedicated hardware and software trigger
- + large and clean data sets



# Trigger and Data Taking



### Luminosity

#### Integrated Lumi over Fill Number at 3.5 TeV



# **Trigger System**



IHC



# L0+HLT Efficiency

#### L0 + HLT1 single muon line

(tested on reconstructed  $J/\psi$  in mb sample)

#### HLT1 di hadron line

(tested on reconstructed charm in mb sample)



#### very good agreement between data and MC



# **Trigger Settings**

#### Integrated Lumi over Fill Number at 3.5 TeV





# High Luminosity Running

- extreme case: observed up to 2.3 pile-up (v = 1.9) in recorded events at beginning of fill, **LHCb designed to run at v = 0.7 (@ 14 TeV)** 

#### take the opportunity of low bunch rate, to gain luminosity - try it now or never

- very high occupancy,

e.g. Outer Tracker occupancy goes up to 20% larger event size (85kB, before 35kB)

- significantly slower for HLT & offline processing and stripping
- ghost/fakes rates, efficiency needs to be studied (initial MC studies indicated decent behaviour)



- optimal compromise between quantity and quality of physics data need to be found taking short and longterm physics goals into account.
- We have the flexibility to choose our working point!
- several potential options (if needed):
  - cut on track multiplicity early at HLT 1 and/or tighter (nominal) cut at L0
  - need more testing/commissioning: beam offset in vertical plane/bunches of lower intensity
  - longer term solution: larger  $\beta^{*}$  for LHCb



# **GRID-Computing**



102<sup>nd</sup> LHCC Meeting, 07.07.2010



#### Vertex Locator: impact parameter, vertex and proper time resolution

10

# Vertex Locator precision measurements at the IA point

- Velo sensors all powered
- cluster finding efficiency 99.8 %
- Velo halves are open at begin of each run

LHC



- fully closed at 7 TeV stable running







#### best single hit resolution ~ 4 $\mu$ m



#### LHCD **Semi-Automatic Closing Procedure**

A side

Entries

Mean

57956

-2.587

- stop 4 times to control position
- current closing procedure takes 6 min
- run-by-run variation (x,y,z): (10,5,25) µm



### **Vertex Resolution**

#### new alignment including z translation

(not yet in standard production) big improvement in alignment monitoring offset In x and y



#### impact parameter resolution:

 $\sigma(IP_x) \sim 16.2 + 24.6/p_{_T} \mu m$  $\sigma(IP_y) \sim 15.7 + 24.6/p_{_T} \mu m$ 





#### New alignment results in significantly improved proper time resolution!

(Note that this will however have little effect on resolving fast  ${\rm B_s}$  mixing)



#### Tracking Stations & Magnet: mass and momentum resolution, tracking efficiencies



### Silicon Tracker

#### IT 98.6% of channels working

#### hit resolution [µm] IT TT



90

80

70

60

50

40

30

20

10

C

6



| - old MC, inspired by test beam:    | 40        | 40 |
|-------------------------------------|-----------|----|
| - data:                             | 55        | 65 |
| <ul> <li>hit resolution:</li> </ul> | <b>54</b> | 55 |
| - misalignment:                     | <b>10</b> | 35 |

retuned hit resolution in MC (not yet in standard production)





#### remaining difference will be improved by tuning the gain

Stephanie Hansmann-Menzemer

-4

-2

0

2

4

120 TTb

80 **TT**b

60F

40

20 ттах

А

TTaU

-8

-6

100



### **Outer Tracker**

99.3 % channel working

outer tracker resolution  $\pm$  270 µm, close to nominal

However, LHCb outer tracker C frames are moved in and out for maintenance work







### **Invariant Mass Resolution**





### **Tracking Efficiencies**

#### - Tag and Prob method using K $_{_{\rm c}}$ and J/ $\!\Psi$





slightly lower efficiency in data than in MC (related to residual misalignment, ..)

- **4% systematic uncertainties per track** (for all phase space)

- aim for correction + 1-2% uncertainty

### **Tracking Efficiencies**



 $\epsilon$ (data)/ $\epsilon$ (Monte Carlo) = 1.00 ± 0.03

![](_page_19_Picture_0.jpeg)

#### Particle Identification: trigger, flavour tagging & B candidate selection

![](_page_20_Picture_0.jpeg)

# **Muon ID Performance**

MuonID efficiency can be estimated from data with  $J/\psi$  with the "tag and probe" method

![](_page_20_Figure_3.jpeg)

mis-ID tested using  $K_s \rightarrow \pi\pi$ ,  $\Lambda \rightarrow p\pi$  and  $\Phi \rightarrow KK$   $P(\pi \rightarrow \mu)$ : 2.35 ± 0.04 (stat) %  $P(p \rightarrow \mu)$ : 3.1 ± 0.2 (stat) %  $P(K \rightarrow \mu)$ : 1.67 ± 0.06 (stat) %

(in good data/MC agreement)

 $\rightarrow$  ready for J/ $\psi$  cross-section analysis

![](_page_20_Figure_8.jpeg)

![](_page_21_Figure_0.jpeg)

### **Reconstruction of Photons**

 $L = 3.4 \text{ nb}^{-1}$ 

π<sup>°</sup> → γγ

22

700×10<sup>3</sup>

500

400

300

LHCb 600 Preliminary

- achieved 2-2.5% inter calibration with  $\pi^{\scriptscriptstyle 0}$
- many resonances observed
- mass resolution within expected range (sometimes even better than in MC)

![](_page_21_Figure_5.jpeg)

![](_page_22_Picture_0.jpeg)

### **Electron Identification**

![](_page_22_Figure_2.jpeg)

#### 5 % mis-ID rate for 90 % efficiency

4.5 % for MC at same efficiency very good agreement!

![](_page_22_Figure_5.jpeg)

![](_page_23_Picture_0.jpeg)

### **RICH Detectors**

![](_page_23_Figure_2.jpeg)

![](_page_24_Figure_0.jpeg)

### **Single Photon Resolution**

![](_page_24_Figure_2.jpeg)

![](_page_25_Figure_0.jpeg)

### **Particle ID Performance**

![](_page_25_Figure_2.jpeg)

analysis for summer conferences

![](_page_26_Picture_0.jpeg)

### **RICH Particle Zoo**

![](_page_26_Figure_2.jpeg)

# All Pieces Come Together ....

#### early physics results = cross section measurements & particle multiplicities/ratios

-  $K_s$  cross section (2009 data;  $\sqrt{s} = 900$  GeV) (first LHCb paper circulating in the collaboration)

2010 data (preliminary results ahead):

- $\underline{J}/\psi$  cross section (prompt & from b)
- bb cross section
- D<sup>+</sup>/D°/D\*/D production cross section
- <u>p</u>/p ratio
- $-\overline{\lambda}/\lambda$  ratio

![](_page_27_Figure_9.jpeg)

exploit unique coverage of phase space

#### **Common ingredients/systematics to all analysis:** Iuminosity, tracking efficiency, PID-misID/efficiency

![](_page_28_Picture_0.jpeg)

### Luminosity Measurement

$$L = f \sum_{i=1}^{N} \frac{n_{1i}n_{2i}}{4\pi\sigma_{xi}\sigma_{yi}}$$

![](_page_28_Figure_3.jpeg)

- number of colliding bunches
   transverse bunch size
   number of protons per bunch
- : number of protons per bunch : frequency

(some modifications needed for crossing angle, offset, ...)

measurement of beam parameters with vertices in beam-gas events

![](_page_28_Figure_8.jpeg)

### 2009 measurement dominated by systematics:

L = 6.8 ± 1.0 µb<sup>-1</sup>

|                             | Currents | Widths | Positions | Angles |  |  |
|-----------------------------|----------|--------|-----------|--------|--|--|
|                             | 12%      | 5%     | 3%        | 1%     |  |  |
| Stephanie mansmann-wenzemer |          |        |           |        |  |  |

![](_page_28_Figure_12.jpeg)

#### aim for 5% uncertainties till end of 2010

(parallel ongoing: van der Meer scan, currently ~10%)

# $\frac{1}{1000}$ K<sub>s</sub> Cross Section @ $\sqrt{s} = 900$ GeV

 - LHCb 1<sup>st</sup> physics paper at the same time new luminosity method applied and extensive usage/evaluation of all components of the tracking system

- two independent analysis performed (using different tracking detectors)

- covered range:  $0 < p_{T} < 1600 \text{ MeV}$  2.5 < y < 4.0 $\sqrt{900} \text{ GeV} (6.8 \pm 1.0 \ \mu \text{b}^{-1})$ 

#### - main systematic uncertainties:

- 10% statistical
- 13% luminosity
- 10% tracking uncertainties

### - data tends to higher $p_{\!_{\rm T}}$ values

![](_page_29_Figure_9.jpeg)

![](_page_30_Picture_0.jpeg)

### **Strange Hadron Ratios**

![](_page_30_Figure_2.jpeg)

# J/ψ Cross Section

#### measure:

 $d\sigma/dp_{T}(all J/\psi)$   $\sigma(prompt J/\psi)$  $\sigma(J/\psi from b)$ 

#### polarization

- detector acceptance generates artifical polarization
- analyse cross section with different polarization hypothesis (causes 4-25% difference)

next step:

 fit for transversal and longitudinal polarization using templates from MC

![](_page_31_Figure_8.jpeg)

![](_page_31_Figure_9.jpeg)

![](_page_32_Figure_0.jpeg)

# **bb** Cross Section

![](_page_32_Figure_2.jpeg)

#### **First fully reconstructed B signals**

![](_page_33_Figure_2.jpeg)

many more to come very soon ...

![](_page_34_Picture_0.jpeg)

### Conclusion

#### LHCb in very good shape!

- detector performance and understanding steadily improving
- several physics analysis are on their way to ICHEP:
  - minimum bias physics
  - b, open charm, J/ $\psi$  cross sections
- waiting for many more B data to start core physics programme
- task for the summer:

"Which running conditions are best for our short and longterm physics goals?"

![](_page_34_Picture_10.jpeg)