

Edwige Tournefier (LAPP, Annecy) on behalf on the LHCb collaboration

LHCC open session

March, 5th 2014

Outline

- LS1 activities
- Run 2 preparation
- LHCb physics output
- LHCb upgrade
- Conclusion

LS1 activities

- Consolidation of dipole magnet:
 - Rubber protections moved due to the Up/Down cycles
 - Old protections removed and replaced with an improved version

Done!

LS1 activities

- Ongoing maintenance + improvements to subdetector (hardware and software)
 - HCAL: replacement of ~15% PMs
 - RICH: improved version of the spare HPDs (improved vacuum)
 - ECAL: replacement of the fibers+LED system used for calibration
 - Degradation of fibers due to radiation
 - Plastic fibers replaced with quartz rad hard one

LS1 activities

- Computing: preparing the full re-stripping of Run1 data with final calibrations (legacy dataset) → planned for end of summer
- Preparing the LHCb upgrade during LS1!
 - Installation of the supports for the optical fibers in preparation
- Preparing the restart for Run2:
 - Regular commissioning weeks

Run2 preparation

- LHCb Run2:
 - Stay at L= $4x10^{32}$ cm⁻²s⁻¹, $50ns \rightarrow 25ns \Rightarrow$ less pile-up
 - $8 \rightarrow 13$ TeV \Rightarrow bbbar and ccbar cross-sections x~1.6
 - \Rightarrow The trigger needs to be improved for the new conditions
 - L0 (hardware trigger limited to 1MHz) :
 - an example of efficiency and stability increase:
 - Ageing correction of HCAL and ECAL (fill by fill):
 - monitor using minbias events
 - Adjust HV on fill by fill basis to correct gain

HLT: CPU increase by a factor 2

- \Rightarrow can perform more complex selections in HLT
 - Optimize tracking algorithm ($\Rightarrow p_T$ threshold)

Run2 preparation

LHCb physics output

Papers submitted since last LHCC

B-hadron lifetime

Measurement of the $B_s^0 \rightarrow D_s^- D_s^+$ and $B_s^0 \rightarrow D^- D_s^+$ effective lifetimes Measurement of the B_c^+ meson lifetime using $B_c^+ \rightarrow \mathcal{J}/\psi \mu^+ v_{\mu} X$ decays Measurements of the B^+ , B^0 , B_s^0 meson and Λ_b^0 baryon lifetimes Precision measurement of the Λ_{h}^{0}/B^{0} lifetime ratio

Production. cross-sections

Observation of associated production of a Z boson with a D meson in the forward region arXiv:1401.3245Updated measurements of exclusive J/ψ and $\psi(2S)$ production cross-sections in pp collisions at $\sqrt{s}=7$ TeV J. Phys. G: Nucl. Part. Phys. 41 (2014) 055002 arXiv:1401.3288 Measurement of Upsilon production in pp collisions at $sqrt{s}=2.76$ TeV arXiv:1402.2539 Measurement of charged particle multiplicities and densities in pp collisions at \sqrt{s} =7TeV in the forward region arXiv:1402.4430

B-hadron decay

Searches for Λ_{b}^{0} and Ξ_{b}^{0} decays to $K_{s}^{0}p\pi$ and $K_{s}^{0}pK^{-}$ final states with first observation of the $\Lambda_{b}^{0} \rightarrow K_{s}^{0}p\pi^{-}$ decay arXiv:1402.0770

CP violation

A study of CP violation in $B^{\pm} \rightarrow DK^{\pm}$ and $B^{\pm} \rightarrow D\pi^{\pm}$ decays with $D \rightarrow K^{0}{}_{S}K^{\pm}\pi^{\mp}$ final states arXiv:1402.2982 Measurement of resonant and *CP* components in $B^0 \rightarrow J/\psi \pi^+ \pi^-$ decays arxiv:1402.6248

Search for Majorana neutrinos in $B^- \rightarrow \pi^+ \mu^- \mu^-$ decays Observation of photon polarization in the $b \rightarrow s\gamma$ transition

Search for new physics with rare decay

arXiv:1401.5361 arXiv:1402.6852

arXiv:1312.1217

arXiv:1401.6932

arXiv:1402.2554

arXiv:1402.6242

Photon polarization in $b \rightarrow s\gamma$

- Standard Model: photon almost fully left-handed in $b \rightarrow s\gamma$ NP can introduce a significant right-handed component
- Measurement of up/down asymmetry in B⁺ \rightarrow K⁺ $\pi^{-} \pi^{+} \gamma$ decay: $A_{UD} \propto \lambda_{\gamma}$

 $\mathcal{A}_{\rm UD} = \frac{\int_0^{\pi/2} \frac{d\Gamma}{d\cos\theta} d\cos\theta - \int_{\pi/2}^{\pi} \frac{d\Gamma}{d\cos\theta} d\cos\theta}{\int_0^{\pi} \frac{d\Gamma}{d\cos\theta} d\cos\theta}$ Rel. I $K_1(1270)$ $8 \text{ MeV}/c^2$ sPlot -400 K₁(1400) 350 K₂*(1430) 300 K₂(1770) K₂(1580) 250 Events / (K₃*(1780) 200 150 100 50 0 1200 1400 1600 1800 $M(K\pi\pi)$ [MeV/ c^2]

arXiv:1402.6852

H⁻, χ⁻,ĝ, χ⁰

s,d

s,d

u,c,t

W-

• Proportional factor between A_{UD} and λ_{γ} depends on the K^{res} \rightarrow K⁺ $\pi^{-} \pi^{+}$ resonances and their interference : not well known

Photon polarization in $b \rightarrow s\gamma$

• Up-Down asymmetry measured in 4 bins of the K⁺ $\pi^- \pi^+$ invariant mass

 $\begin{array}{c|cccc} \mathsf{M}(\mathsf{K}\pi\pi) & [1.1, 1.3] & [1.3, 1.4] & [1.4, 1.6] & [1.6, 1.9] \\ \hline \\ \hline \\ \hline \\ \mathcal{A}_{\mathrm{nd}} & 6.9{\pm}1.7 & 4.9{\pm}2.0 & 5.6{\pm}1.8 & -4.5{\pm}1.9 \end{array}$

- \Rightarrow The photon is polarized at 5.2σ
- \Rightarrow First direct observation of photon polarization!

350 8 MeV/c² 1 2 300 E 3 LHCb 250200Candidates / 4 150 10050 1200 1400 1600 1800 $M(K = \pi) \Gamma M_{\odot} V / c^{2}$

Theory input needed to extract polarisation

Search for Majorana neutrinos

- Search for Majorana neutrino in $B^- \rightarrow \pi^+ \mu^- \mu^-$ (forbidden in SM)
 - Search also for long-lived neutrinos: detached $\pi^+\mu^-$ vertex

Lifetime measurements: introduction

Why?

- B-hadron lifetimes prediction: all equal at 0th order + corrections $\propto 1/m_b^2$ \Rightarrow Test of Heavy Quark Expansion theory
- Width (Γ_{L} , Γ_{H}) and width difference ($\Delta\Gamma_{s,d}$) of mass eigenstates ($B_{s,d}$) \Rightarrow SM test
- B_cexception: 2 heavy quarks, difficult predictions (weak and strong force interplay) \Rightarrow Test theory models (predictions $\tau(B_c) = 300-700$ fs)

+ important inputs to other measurements

How?

- Methods:
 - Absolute lifetime:
 - b-hadrons arXiv:1402.2554
 - B_c arXiv:1401.6932
 - Ratio of lifetimes:
 - Λ_{b}^{0} arXiv:1402.6242
 - $B^0_{s} \rightarrow D_s^- D_s^+$ arXiv:1312.1217

Pull

Measurement of B_c^+ lifetime using $B_c^{+} \rightarrow J/\psi \mu^+ \nu_{\mu} X$

- B_c : only observed open-flavor state formed by 2 heavy quarks \Rightarrow its decay dynamics have distinctive features
- Measurement of B_c^+ lifetime provides an essential test of theoretical models
- Predictions: $\tau(B_c) = 300-700$ fs
- LHCb analysis using partially reconstructed decay $B_c^+ \rightarrow J/\psi \mu^+ v_{\mu}(X)$
 - High statistic and clear 3μ signature
 - Partial reconstruction
 - \Rightarrow Decay models needed for the dynamics of $B_c{}^+{\rightarrow}J/\psi\mu^+\nu_{\mu}$

Measurement of B_c^+ lifetime using $B_c^+ \rightarrow J/\psi \mu^+ \nu_{\mu} X$

- Important ingredients:
 - Relate the pseudo propertime t_{ps} to the decay time
 - 2D models of M(J/ $\psi\mu$) and t_{ps} for bkg and signal
- The lifetime is extracted from a 2D fit of t_{ps} and M(J/ $\psi\mu$)

 $\Rightarrow \tau(B_c^+) = 509 \pm 8 \text{ (stat)} \pm 12(\text{syst}) \text{ fs}$

PDG 2013: $\tau(B_c^+) = 452 \pm 33$ fs

 $B^+ \rightarrow J/\psi K^+$

 $B^0 \rightarrow J/\psi K^{*0}$

Measurement of b-hadron lifetimes

• Heavy quark expansion theory predicts b hadron lifetimes: \Rightarrow all b-hadrons lifetimes equal at 0th order + corrections $\propto 1/m_b^2$

Detached J/ ψ vertex

Measurement of absolute b-hadron lifetimes using J/ψ X final states:

Measurement of b-hadron lifetimes

 \Rightarrow Most precise single measurements of b hadron lifetimes! (except Λ_{b}^{0})

Measurement of the $\Lambda_{\rm b}^0$ / B⁰ lifetime ratio

arXiv:1402.6242

- HQE theory predicts that Λ_{h}^{0} and B⁰ lifetimes differ only by few %
- 2013 PDG value: $\tau(\Lambda_{b}^{0})/\tau(B^{0})=0.798\pm0.052$!
- LHCb measurement uses the ratio of yields:
 - $\Lambda^0_b \rightarrow J/\psi pK^-$
 - $B^0 \rightarrow J/\psi K^{*0} (\rightarrow \pi^+ K^-)$

- $B^0 \rightarrow J/\psi K^{*0}(\rightarrow \pi^+ K^-)$ Same 4 track topology \Rightarrow cancelation of systematics Ξ Decay time distributions obtained by performing mass fits in bins of decay time

 $\Rightarrow \tau(\Lambda_{b}^{0})/\tau(B^{0}) = 0.974 \pm 0.006 \pm 0.004$ in agreement with theory expectation !

 $\Rightarrow \tau(\Lambda_{b}^{0}) = 1.468 \pm 0.009 \pm 0.008 \text{ ps}$ (when combined with LHCb result arXiv:1402.2554)

J. Phys. G: Nucl. Part. Phys. 41 (2014) 055002 Exclusive J/ ψ and ψ (2S) production arXiv:1401.3288

- Exclusive J/ψ and $\psi(2S)$ production: test of QCD and pomeron theory + constraint on gluon PDF
- Select events with
 - Exclusively 2 tracks identified as μ
 - No photons
 - Low pT

Exclusive J/ ψ and ψ (2S) production

- First measurement of differential cross-section for $\psi(2S)$!
- Comparions with theory predictions (LO, NLO and saturation effects) ⇒ need NLO
 - \Rightarrow results agree with saturation models

Measurement of charged particles arXiv:1402.4430 multiplicities in pp collisions

- Soft QCD measurements used for tuning of parameters in MC
 ⇒ vital for understanding background in NP search or precision measurements
- Prompt charged particle multiplicity measurement at 7 TeV

 \Rightarrow clear disagreement with PYTHIA6

Measurement of charged particles multiplicities in pp collisions

- Soft QCD measurements used for tuning of parameters in MC
 ⇒ vital for understanding background in NP search or precision measurements
- Prompt charged particle multiplicity measurement at 7 TeV

 \Rightarrow clear disagreement with PYTHIA6

 \Rightarrow better with PYTHIA 8 (expected) but not perfect

LHCb Upgrade

- VELO and PID TDRs submitted to LHCC in December
- LHCb Tracker upgrade delivered to the LHCC on Feb 21st
- Only one more TDR to come: Online, DAQ and Trigger (June)

Tracker upgrade

LHCb upgrade:

- Detector readout at 40 MHz (1MHz hardware trigger removed)
 ⇒ replacement of front-end electronics and of some sensitive elements
- L = $2x10^{33}$ cm⁻²s⁻¹, nb of pp int. per bunch crossing (v)=7.6 \Rightarrow higher occupancy
 - \Rightarrow Need to increase granularity (TT, OuterT-stations)
- Radiation dose
 - \Rightarrow Some detectors need to be replaced to sustain the radiation during the upgrade

TT upgrade: UT

TT upgrade

- Silicon sensors placed on staved system inspired by ATLAS upgrade silicon
- Cooling integrated into staves: -5 °C

T stations upgrade: SciFi

- Current T-stations composed of 2 subdetectors:
 - Outer tracker (straw tubes) + Inner tracker (silicon micro-strip)
- Upgrade: replace all with scintilating fibers
 - Advantage of 1 single technology
 - Pattern recognition fast enough for HLT
 - Resolution ${<}100\mu m$, very low material budget (active material)

-Scintillating fibers (\emptyset 250 μ m, L=2.5m)

VELO

VELO track

- Mirrors in the center for better light collection

Upstream track

Long track

Downstream track

UT

- Readout at 40MHz by SiPM
- SiPMs + FE electronics in readout box

2×2.5m

SciFi Tracker

- Fibers
 - Radiation studies:
 - Small effect on wavelength
 - Signal loss due to attenuation length acceptable
- SiPM
 - Hamamatsu and KETEK tested: OK
 - Fast signal response and recovery
 - Radiation: to be kept at -40 °C
- Electronics
 - Fast shaper (10ns)
 - 25ns gated integrator
 - Clusterization in FPGA

Distance from SiPM / cm

 \emptyset 250µm fibers mat

Upgrade Tracking performance

New detector in simulation magnet Track reconstruction algorithm rewritten for new detector \Rightarrow Efficiency, ghost rates, resolution UT VELO Long tracks reconstruction efficiency: For b-hadron daughters, p>5GeV/c: current LHCb Upgrade LHCb $4x10^{32}$ 1×10^{33} 2x10³³ Luminosity $(cm^{-2}s^{-1})$ efficiency (%) 96.8 95.6 94.7 \Rightarrow Good overall efficiencies 50.007 Algorithm not tuned

0.006

0.005 0.0040.003

0.002

0.001 E

UT/TT hits required

20

10

- Detector geometry can be tuned as well
- Momentum resolution:

•

Better than current design thanks to less material

P [GeV]

current, only with TT

upgrade, only with UT

40

30

SciFi

Conclusions

- LHCb is producing lots of high quality data results And still more to come with Run1 data!
- Improvements / maintenance on the detector going smoothly during LS1
- Actively preparing Run2 and the restart

- The penultimate TDR has been submitted (Tracker) Last TDR to come: Online, DAQ and trigger (June)
- All the upgrade activities are on schedule for LS2

Search for b-baryons decays: $\Lambda_b^0(\Xi_b^0) \rightarrow K_s^0 p \pi^- and K_s^0 p K^-$

- Study of b-baryons is an almost unexplored field: large program!
- Search for $\Lambda_b^0(\Xi_b^0) \rightarrow K_s^0 p \pi^-$ and $K_s^0 p K^-$ and Br measurement wrt $B_s^0 \rightarrow K_s^0 \pi^+ \pi^-$

arXiv:1402.0770

arXiv:1402.2982

Study of CP violation in B->DK(π) decays

SS

 $B^- \rightarrow [K^0_S K^+ \pi^-]_D K^-$ (g)

5600

5800

Signal

Sum, incl. combinatorics

Bc lifetime

Λ^0_{b} lifetime

Search for Majorana neutrino: limits

Upgrade Tracking performance

- Adding UT hits to Long tracks:
 - reduction of ghost rates by a factor > 2
 - Drop of efficiency $\sim 1\%$

