

Topics

Introduction

Tracker layout

Straw tube drift cells

Detector modules

Performance

Stations

Electronics

HV, gas, alignment

Project organization

Summary

Boundary IT - OT: cell occupancy \leftarrow track density \otimes granularity

TRACKER LAYOUT

Detection elements 5 mm diameter straw tubes packed in double-layered modules

Station = 4 planes of modules arranged as X U V X views

		active	e area	
station	z_{max}	x_{max}	y_{max}	channels
	(mm)	(mm)	(mm)	
2	2275	704	581	4.3 k
3	3635	1125	929	6.8 k
4	6035	1867	1541	11.4 k
5	7035	2176	1796	13.1 k
6	8038	2486	2052	15.1 k
7	8497	2628	2170	16.0 k
8	8956	2770	2287	16.8 k
9	9415	2912	2404	17.5 k
				101.0 k

Stereo angle $\pm 5^{\circ}$ optimised for

 $\varepsilon_{seeding}\otimes \varepsilon_{following}\otimes \mathsf{RICH}$ slopes

Economised since Techn. Proposal:

- No station behind RICH 2
- No Y planes at RICHes
- One magnet station less

 π -K separation for true pions

STRAW TUBES

Cell size limited by: occupancy signal collection time clean electrostatics (tube) fast drift gas

 T_{max} < 25 ns ideal $T_{max} < 50$ ns realistic

consequence: time overlap with hits from neighbouring BX

Use Ar / CF_4 / CO_2 for fast drift Large electron capture c.s. of CF_4 at few eV:

- degrades drift resolution
 insignificant
- breakup to free fluorine radicals

Cathode surface of noble metal or carbon loaded polymer (ATLAS, HERA-B, COMPASS)

Technical Proposal: "drift cells of straw tube geometry built with honeycomb chamber technique"

HC proto's of C-doped polycarbonate foil (Pokalon) Switched to real straw tubes of C-doped Kapton because:

- 1. Pokalon-C very expensive
- 2. doubts about Pokalon-C 'aging' in Ar / CF $_4$ / X
- 3. slow drift in HC cell corners
- 4. better precision of cell shape

Channel density increase: 5 + 1 mm HC cell pitch 5.25 mm tube pitch

Less planes \implies stayed at 100 k channels

Outer layer = 25 μ m Al \Leftarrow X-talk suppression

Tested 1. Kapton XC

- 2. aluminium
- 3. pure Kapton
- 4. aluminised Mylar
- 1 & 2 cathode to HV GND via outer layer

X talk by amplitude: 0.5 % aluminium 1.8 % Kapton XC stays worse with shielding foils Pair of Al-XC tubes acts as $1/4\lambda$ resonator if only

sees GND at preamp $\mathcal{L} = O (2 \text{ m}) \Longrightarrow \nu = O (40 \text{ MHz})$, inside preamp bandwidth

Remedy: tube grounding at short intervals

64 cells wide

sandwich plates of HC core + 100 $\mu \rm m$ carbon facings + 20 $\mu \rm m$ Al foil

no module overlap \implies loose 1/2 cell at border

gas distribution into tubes

Electrical split near y = 0 to limit cell occupancy and signal propagation time

Wire centering supports every 80 cm

midway splitter boost far-end amplitude: no terminating impedance

signal round trip \leq 20 ns \simeq shaping time

10 mm long wire support \implies 12 mm insensitive region

assembly of end piece and front end boards

MATERIAL BUDGET

Module elements: 0.67 % X₀

2 tube layers	0.276	%
4 x 0.1 mm facing	0.14	%
2 x 10 mm HC core	0.11	%
2 x 20 μ m Al foil	0.045	%
gluings (est.)	0.1	%

Break down for tube layers:

aluminium0.165 %glue0.02 %Kapton XC0.091 %

Add localised materials \implies 0.75 % per module 4 x 0.75 % = 3.0 % X₀ per station Sum for Outer Tracker: 24 % X₀ 10 % λ_I

TEST BEAM RESULTS

PERFORMANCE STUDIES

OT configuration optimization

Track reconstruction on simulated $b\overline{b}$ events + min. bias bkg events

pp interactions at $\sqrt{s} = 14$ TeV Pythiaparticle decaysQQ packagefollow through LHCbGEANT based SICBOuter Tracker responseGAUDItuned to test data, incl.dead time etc.track reconstructionTRAIL package

Background mixed into $b\bar{b}$ events :

PILE UP: min. bias in same BX (average 0.53) **SPILL OVER:** hits due to different BX

- 1. overlap of 50 ns OT time windows per BX
- 2. long-lived curling tracks

OCCUPANCY

Def: fraction of channels hit within the 50 ns event window

importance:

 pattern recognition efficiency & ghost rate requires mean occupancy

seeding ≤ 10 %

other $\leq 15 \%$

• f.e. dead time \simeq 35 ns / hit occupancy \Longrightarrow inefficiency

seeding eff. vs number of hits in T6 – T9

Tuning of IT - OT boundary

Track reconstruction $OT \oplus IT$

Upstream tracking

- find track seeds in T6 T9
- assume origin in vertex $\Rightarrow \delta p/p$ to O(2 %) from p_t kick
- follow into the gently rising B field

Fast variant for L2 trigger

• match track seed with VELO track, p from kink $\delta p/p$ = 1.3 % matching eff. = 92 % for p > 5 GeV/c

Downstream tracking

• follow VELO track into the magnet (T4) $\delta p/p \simeq 0.6 \%$ $\varepsilon = 80 \% - 90 \%$ depending on p

m.s. term (constant) and resolution term ($\propto p$) are equal at 100 GeV/c

 $<\delta p/p>$ = 0.39 % for p> 1 GeV/c

Upstream tracking efficiencies

track following $\leq 5^{o}$

track seeding $\leq 10^o$

RICH slopes not too small, 5° still OK $(\Rightarrow 0.09 \text{ mrad on track})$ vs 0.58 mrad per photon)

seeding eff. vs stereo angle

following eff. and ghost rate vs stereo angle

Physics performance illustration

Tracking efficiency

 $B_d \to \pi \pi$ 94 % (\Leftarrow 97 % per track) $B_s \to D_s(KK\pi)K$ 80 % (\Leftarrow 95 % per track)

Mass resolution

comment to mass resolution

- Tracker \implies track momenta
- VELO \implies track angles

$\delta M/M \propto \delta p/p \ {\rm and} \propto \delta lpha/lpha$

- $B \rightarrow \pi \pi$ hard tracks, large opening angle momentum error dominates
- $D_s \rightarrow KK\pi$ soft tracks, small opening angle errors on momenta and angles contribute equally

cp. Techn. Proposal: assumed $\delta p/p = 0.3 \%$ $\delta M(B_s \rightarrow D_s K)$: unchanged $\delta M(B_d \rightarrow \pi \pi)$: 17 MeV/c² × (0.39 % / 0.3 %) = 22 MeV/c²

10 cm between pole faces and \pm 250 mrad acceptance limit

T3 – T5 mounted on rails fixed to magnet yoke L/R halves separate when moving out

ELECTRONICS

104000 channels

Front end:

- Hit rates locally up to 4 MHz at $\mathcal{L} = 5 \times 10^{32} cm^{-2} s^{-1}$
- radiation dose O(10 krad/yr) ⇒ rad. tolerant / hard

Preamp: 8-channel ASDBLR chip

 $\begin{array}{lll} \text{DMILL} \rightarrow \text{radiation hard} \\ \text{peaking time} & 8 \text{ ns} \\ \text{shaping time} & 20 \text{ ns} \end{array}$

Custom designed TDC OTIS chip, ASIC lab Heidelberg

- rad hard 0.25 μ m CMOS
- clock driven (via TTC system from LHC clock)
- DLL adds 5 bits fine time
- 32 channels / chip
- each channel has its own clock-synchronous L0 buffer
- on L0 accept two buckets to derandomizer

OTIS development steps

submits of TDC core and memory tested July 2001first submit of full chipApril 2002final evaluationMay 2003

fall-back solution: already existing HPTDC chip

- 32 channels share 1 L0 buffer ⇒ in hot regions use only 16 channels/chip
- limited radiation tolerance ⇒ not on f.e. boards (racks near detector)
- FPGAs convert data to OTIS format ⇒ same L1 electronics

Can do the job at added cost of crates and cabling

HV DISTRIBUTION

2×64 ch per HV branch

PROJECT ORGANISATION

Milestone	Date
Mechanics	
Engineering design of modules completed	12/2001
Engineering design of frames completed	6/2002
Start of module production	6/2002
Start of frame production	3/2003
All frame parts at IP8; start of station assembly	6/2004
Last modules to IP8	4/2005
Last station installed	6/2005
Electronics	
TDC choice	5/2003
Start of electronics production	6/2003
All electronics produced and tested	3/2005
Project	
Commissioning completed	3/2006

/59

Task	Institutes	
Mechanics		
T2 – T5	Heidelberg, Krakow	
Т6 – Т9	Beijing, NIKHEF, Warsaw	
Electronics		
Before TDC	NIKHEF	
From TDC to DAQ		
Baseline design	Dresden, Heidelberg, NIKHEF	
Fall-back design	Krakow, NIKHEF	
Production & testing	Beijing, Dresden,	
	Heidelberg, NIKHEF	
Services		
Drift gas	CERN, Krakow	
High voltage	CERN, NIKHEF	
Alignment	Warsaw	
Controls	NIKHEF	

Comments

620 modules includes 10 % spares

assembly of large stations at CERN

tracking software and performance studies: common for OT + IT by Tracking Task Force

PROJECT COST

detector modules	2720 kCHF	
electronics	5570	
frames and installation	560	
services	450	

TOTAL

9300 kCHF

SUMMARY

- Module design: ready and proven
- Known how to assemble into stations
- Electronics is designed; TDC still under development, fall-back is on the shelf
- Tracker layout simplified: two stations less than in Technical Proposal
- Track reconstruction efficiency through entire spectrometer \geq 90 %
- Momentum resolution 0.39 % (T.P. assumed 0.3 %)
- Outer Tracker represents 0.24 X₀
 (T.P. idealized design 0.18 X₀)
- Resources of people, time and money match the present project size

Further LHCb optimization: trend to 'less is even better'

May drop another station, but no effect on technical design