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INTRODUCTION

Momentum spectrometer T2 – T9
Track slopes in RICH T1 - T2

T6 - T9
Link vertex⇐⇒ CAL/muon

October 3, 2001 /3



4

Tracker = Inner Tracker + Outer Tracker
fine grained coarse grained

surface 2 % 98 %
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Boundary IT - OT:
cell occupancy←− track density ⊗ granularity
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TRACKER LAYOUT

Detection elements
5 mm diameter straw tubes packed in double-layered
modules
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Module cross section
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Station = 4 planes of modules arranged as X U V X
views

active area

station zmax xmax ymax channels

(mm) (mm) (mm)

2 2275 704 581 4.3 k

3 3635 1125 929 6.8 k

4 6035 1867 1541 11.4 k

5 7035 2176 1796 13.1 k

6 8038 2486 2052 15.1 k

7 8497 2628 2170 16.0 k

8 8956 2770 2287 16.8 k

9 9415 2912 2404 17.5 k

101.0 k

Stereo angle ±5
o optimised for

εseeding ⊗ εfollowing⊗ RICH slopes
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Economised since Techn. Proposal:

• No station behind RICH 2

• No Y planes at RICHes

• One magnet station less

Without T11,

extended RICH

With T11
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STRAW TUBES

Cell size limited by:
occupancy
signal collection time

clean electrostatics (tube)
fast drift gas

Tmax < 25 ns ideal
Tmax < 50 ns realistic

consequence: time overlap with hits from
neighbouring BX

Detector sample

25ns 25ns 25ns 25ns 25ns 25ns
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Use Ar / CF4 / CO2 for fast drift
Large electron capture c.s. of CF4 at few eV:

• degrades drift resolution insignificant

• breakup to free fluorine radicals

Cathode surface of noble metal or carbon loaded polymer
(ATLAS, HERA-B, COMPASS)

Technical Proposal: “drift cells of straw tube geometry built
with honeycomb chamber technique”

HC proto’s of C-doped polycarbonate foil (Pokalon)
Switched to real straw tubes of C-doped Kapton because:

1. Pokalon-C very expensive

2. doubts about Pokalon-C ‘aging’ in Ar / CF4 / X

3. slow drift in HC cell corners

4. better precision of cell shape

Channel density increase: 5 + 1 mm HC cell pitch
5.25 mm tube pitch

Less planes =⇒ stayed at 100 k channels
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Inner layer = 40 µm Kapton XC with 30 % volume doping

Tested in Ar / CF4 / CO2 to
1.2 C/cm (realistic: p beam)

several C/cm (extreme: glow discharge)

Estimate hottest OT regions: 0.25 C/cm per year

Module aging tests in HERA-B and with X-ray source

realism accelerated
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Outer layer = 25 µm Al⇐= X-talk suppression

Tested 1. Kapton XC
2. aluminium
3. pure Kapton
4. aluminised Mylar

1 & 2 cathode to HV GND via outer layer

October 3, 2001 /14



15

X talk by amplitude:
0.5 % aluminium
1.8 % Kapton XC

stays worse with shielding foils

Pair of Al-XC tubes acts as 1/4λ resonator if only
sees GND at preamp
L = O (2 m) =⇒ ν = O (40 MHz), inside preamp
bandwidth

Remedy: tube grounding at short intervals

October 3, 2001 /15



16

STRAW TUBE MODULES

64 cells wide
sandwich plates of HC core + 100 µm carbon facings + 20
µm Al foil

no module overlap =⇒ loose 1/2 cell at border
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drift gas flows through and around the tubes

gas distribution into tubes
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Electrical split near y = 0 to limit cell occupancy and
signal propagation time

Wire centering supports every 80 cm
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midway splitter
boost far-end amplitude: no terminating impedance
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signal round trip ≤ 20 ns ' shaping time
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10 mm long wire support =⇒ 12 mm insensitive
region
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assembly of end piece and front end boards
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MATERIAL BUDGET

Module elements: 0.67 % X0

2 tube layers 0.276 %
4 x 0.1 mm facing 0.14 %
2 x 10 mm HC core 0.11 %
2 x 20 µm Al foil 0.045 %
gluings (est.) 0.1 %

Break down for tube layers:

aluminium 0.165 %
glue 0.02 %
Kapton XC 0.091 %

Add localised materials =⇒ 0.75 % per module
4 x 0.75 % = 3.0 % X0 per station
Sum for Outer Tracker:

24 % X0

10 % λI
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TEST BEAM RESULTS
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plateau curves and cell resolution at different CF4

concentrations
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Tmax vs B field: 15 % CF4 is enough
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smallish effect of CF4 concentration on resolution
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homogeneous response along 3.3 metre long and fully
realistic prototype
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PERFORMANCE STUDIES

OT configuration optimization

Track reconstruction on simulated bb̄ events + min.
bias bkg events

pp interactions at
√

s = 14 TeV Pythia
particle decays QQ package
follow through LHCb GEANT based SICB
Outer Tracker response GAUDI

tuned to test data, incl. dead time etc.
track reconstruction TRAIL package
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Background mixed into bb̄ events :

PILE UP: min. bias in same BX (average 0.53)

SPILL OVER: hits due to different BX

1. overlap of 50 ns OT time windows per BX

2. long-lived curling tracks
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quiet Bd → π+π− event
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busy Bd → π+π− event
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OCCUPANCY

Def: fraction of channels hit within the 50 ns event
window
importance:

• pattern recognition efficiency & ghost rate
requires mean occupancy

seeding ≤ 10 %

other ≤ 15 %

• f.e. dead time ' 35 ns / hit
occupancy =⇒ inefficiency
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Tuning of IT - OT boundary
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occupancy
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Station
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Track reconstruction
OT ⊕ IT

Upstream tracking

• find track seeds in T6 – T9

• assume origin in vertex⇒ δp/p to O(2 %) from pt kick

• follow into the gently rising B field

Fast variant for L2 trigger

• match track seed with VELO track, p from kink

δp/p = 1.3 %
matching eff. = 92 % for p > 5 GeV/c

Downstream tracking

• follow VELO track into the magnet (T4)
δp/p ' 0.6 %

ε = 80 % – 90 % depending on p
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Upstream tracking
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Upstream tracking efficiencies
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Stereo angle

track following ≤ 5o

track seeding ≤ 10o

RICH slopes not too small, 5o still OK
(⇒ 0.09 mrad on track
vs 0.58 mrad per photon)
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Stereo angle  (degrees)
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Physics performance illustration

Tracking efficiency

Bd → ππ 94 % (⇐ 97 % per track)

Bs → Ds(KKπ)K 80 % (⇐ 95 % per track)

Mass resolution
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comment to mass resolution

Tracker =⇒ track momenta
VELO =⇒ track angles

δM/M ∝ δp/p and ∝ δα/α

B → ππ hard tracks, large opening angle
momentum error dominates

Ds → KKπ soft tracks, small opening angle
errors on momenta and angles contribute
equally

cp. Techn. Proposal:
assumed δp/p = 0.3 %
δM(Bs → DsK): unchanged
δM(Bd → ππ): 17 MeV/c2 × (0.39 % / 0.3 %) = 22
MeV/c2
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STATION DESIGN

seeding stations T6 – T9 are identical
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L/R station halves
modules mounted on top/bottom precision bars
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10 cm between pole faces and ± 250 mrad
acceptance limit
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T3 – T5 mounted on rails fixed to magnet yoke
L/R halves separate when moving out
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ELECTRONICS

32x32x

2x

TTCrxECS
slave

Power
regulator

L0 derandomizerL0 derandomizer

level 0
buffer
level 0
buffer

service
boards

~ 40

3250
front−end
boards

815 signal
distribution
boards

102
level 1
boards

104000 channels

815 optical links

204 optical links

DLLDLL

DACsDACs

trigger
logic

trigger
logic

ECS
slave

L1 Yes
clock

I2C
JTAG

level 1 logic &
header generator

level 1 buffer
(FIFO)

TTCrx

output FIFO

L1 derandomizer

straw tube signals

clock

L0−yes

8 I2C

ASDBLR

4x
V threshold

32
channels

L
H

C
b

 c
av

er
n

fine timefine time

zero−suppressor
32:1 multiplexor

C
o

u
n

ti
n

g
 r

o
o

m

Front−End links to DAQ

Multiplexor 4:1

GOL

OTIS
TDC

Power

TTC
ECS

October 3, 2001 /50



51

Front end:

• Hit rates locally up to 4 MHz at
L = 5× 1032cm−2s−1

• radiation dose O(10 krad/yr) =⇒ rad. tolerant /
hard

Preamp: 8-channel ASDBLR chip

DMILL→ radiation hard
peaking time 8 ns
shaping time 20 ns
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Custom designed TDC
OTIS chip, ASIC lab Heidelberg

• rad hard 0.25 µm CMOS

• clock driven (via TTC system from LHC clock)

• DLL adds 5 bits fine time

• 32 channels / chip

• each channel has its own clock-synchronous L0
buffer

• on L0 accept two buckets to derandomizer

OTIS development steps

submits of TDC core and memory tested July 2001
first submit of full chip April 2002
final evaluation May 2003
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fall-back solution: already existing HPTDC chip

• 32 channels share 1 L0 buffer⇒ in hot regions
use only 16 channels/chip

• limited radiation tolerance⇒ not on f.e. boards
(racks near detector)

• FPGAs convert data to OTIS format⇒ same L1
electronics

Can do the job at added cost of crates and cabling
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HV DISTRIBUTION

2 × 64 ch per HV branch
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Drift gas system

recirculating⇐ CF4 cost

90 % regeneration per cycle

flow rate O(1 vol/ 2 h)

October 3, 2001 /56



57

Hardware alignment monitoring
(if it fits in)

RASNIK system logs movements within station triplets
MASK (1) → LENS (2) → CCD CAMERA (3)

October 3, 2001 /57



58

PROJECT ORGANISATION

Milestone Date

Mechanics

Engineering design of modules completed 12/2001

Engineering design of frames completed 6/2002

Start of module production 6/2002

Start of frame production 3/2003

All frame parts at IP8; start of station assembly 6/2004

Last modules to IP8 4/2005

Last station installed 6/2005

Electronics

TDC choice 5/2003

Start of electronics production 6/2003

All electronics produced and tested 3/2005

Project

Commissioning completed 3/2006
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Task Institutes

Mechanics

T2 – T5 Heidelberg, Krakow

T6 – T9 Beijing, NIKHEF, Warsaw

Electronics

Before TDC NIKHEF

From TDC to DAQ

Baseline design Dresden, Heidelberg, NIKHEF

Fall-back design Krakow, NIKHEF

Production & testing Beijing, Dresden,

Heidelberg, NIKHEF

Services

Drift gas CERN, Krakow

High voltage CERN, NIKHEF

Alignment Warsaw

Controls NIKHEF
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Comments

620 modules includes 10 % spares

assembly of large stations at CERN

tracking software and performance studies:
common for OT + IT by Tracking Task Force
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PROJECT COST

detector modules 2720 kCHF
electronics 5570
frames and installation 560
services 450

TOTAL 9300 kCHF
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SUMMARY

• Module design: ready and proven

• Known how to assemble into stations

• Electronics is designed; TDC still under
development, fall-back is on the shelf

• Tracker layout simplified: two stations less than
in Technical Proposal

• Track reconstruction efficiency through entire
spectrometer ≥ 90 %

• Momentum resolution 0.39 %
(T.P. assumed 0.3 %)

• Outer Tracker represents 0.24 X0

(T.P. idealized design 0.18 X0)

• Resources of people, time and money match the
present project size

Further LHCb optimization: trend to ‘less is even
better’
May drop another station, but no effect on technical
design
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