

LHCb status

103rd LHCC meeting 22.09.2010

Marta Calvi University Milano-Bicocca and INFN for the LHCb Collaboration

Data taking

 Stable data taking, high efficiency in all systems, globally increasing with time.

Detectors' efficiency

Running conditions

- Running LHCb with multiple interactions affects trigger, computing, reconstruction and analysis.
- Work on-going to fully understand all implications to exploit high luminosity and get best performance.

Detector performance

- Good trigger performance, raise thresholds to cope with increasing rate while keeping always maximum efficiency for most channels.
- All detectors performing well, no major concern.
- Use of new larger samples of data to complete calibration, alignment and progessive understanding of performance.
- Preparing for remaining 2010 run (≈50 pb⁻¹) and 2011 running (≈1 fb⁻¹).

\rightarrow recent updates in next slides

22/9/10

VELO: IP resolution

 New alignment based on 2010 data: sensor and module alignment and 2 halves alignment.

• Resolution at high p_T in agrees with MC.

Mass resolution: $J/\psi \rightarrow \mu\mu \& Y \rightarrow \mu\mu$

- New alignment of all tracking system.
- Good improvement in momentum resolution for high momentum tracks and mass resolution.

Mass resolution: $B^+ \rightarrow J/\psi K^+$

Mass resolutions approaching MC expectations.

22/9/10

9

Refining calibration with converted photons and electrons.

Promising new signal of $\chi_c \rightarrow J/\psi\gamma$.

Calorimeter

 $\chi_{c} \rightarrow J/\psi(\mu\mu) \gamma$

- $\chi_c \rightarrow J/\psi \gamma$ also for physics studies:
- separation of different states.
- exclusive χ_c production

22/9/10

60

80

11

PID performances measured on data with selected samples of π ,K,p from $K_S \rightarrow \pi \pi$, $\Lambda \rightarrow K\pi, \phi \rightarrow KK$

RICH

Performance at time of ICHEP

$\Delta \log \mathcal{L}(\mathbf{p} - \pi) > 0$

Efficiency

Efficiency

1.2

0.8

0.6

0.4+

LHCb

LHCb

Preliminary

 $K \to K$

 $\pi \to K$

20

40

 $\Delta \log \mathcal{L}(p-\pi) > 5$

 $\Delta \log \mathcal{L}(K-\pi) > 5$

RICH: CK angle resolution

- Alignment of RICH1 and RICH2 mirrors progressing with data.
- New improvement in alignement of the photodetector silicon sensors.

RICH- aerogel

- Areogel radiator made of 16 tiles.
- Need to calibrate refraction index tile by tile.
 Ongoing work.

 $\sigma_{\text{FWHM}} \approx \textbf{3.5} - \textbf{4} \text{ mrad}$

Expected from Montecarlo = 2.6 mrad (as quoted in JINST 3 S08005)

Muon ID efficiency above 90% and mis-ID rate below 2% for p>10 GeV/c

Muon ID

 Cut on global likelihood for muon vs pion hypotesis: reduce mis-ID of a factor about two with few percentage loss in efficiency. In agreement with MC expectations.

22/9/10

Muon ID in multiple-collision

- Recent studies prove performance also in multiple-collision events.
- µID efficiency constant within few percent.
- The mis-ID increase can be controlled with a correct sharing of hits to closeby tracks

 Restriction on number of shared hits gives constant performance with number of interactions..

Analysis working for

Production: in mbias, J/ψ , open charm, beauty ... EW

Plenty of charm and first two/multibody hadronic B decays for CPV studies LHCb u = 5.2754 ± 0.0055 GeV/c LHCb LHCb ເດດໄ $\sigma = 0.0261 \pm 0.0057 \text{ GeV/c}^3$ Preliminary Preliminary Preliminary 5271 9± 1.8 MeV $v_{K\pi} = 56 \pm 10$ s = 7 TeV Data s - 7 TeV Data 20.8 ± 1.4 MeV ass c = 9 637 + 0 056 MeV/c √s = 7 TeV Data

1900

 $A_{u}^{CP} = 0.01 \pm 0.16$

53

D⁰

1850

→D(Кпп)п

EW Physics at LHCb

- Unique LHCb η coverage, allows for interesting W,Z production studies
- First result: charge asymmetry in W[±]→µ[±] v events

(qu) -14 -15

0.12

0.08

0.04

0.02

MCFM LO

√s=7 TeV MSTW2008 PDFs

> Both leptons inside CMS/Atlas

$J/\psi \rightarrow \mu\mu$ production

Preliminary cross section measurement with ~14 nb⁻¹ (ICHEP):

Scale and shapes not well described by colour singlet nor by octet models
→ new studies are coming.

Inclusive J/ψ production:

σ(2.5<y<4,p_T<10 GeV/c)=7.65±0.19±1.10^{+0.87}-_{1.27} μb

• J/ψ production from b:

polarization uncertainty

 σ (2.5<y<4,p_T<10 GeV/c)= 0.81±0.06±0.13 µb

$J/ψ \rightarrow µµ$ production

- Will measure also polarization
- Region of measurement (y, p_T) will be extended with more data, will overlap with GPD.

 Much more data since ICHEP several 100k events/pb⁻¹

Pseudo propertime: $t_z = d_z M(J/\psi)/p_z$ used to separate prompt and J/ψ from b decays

Beauty cross-section with $B \rightarrow D^0 \mu X$

■ BR(b→ $D^0 \mu v X$) = 6.82±0.35 %

LHCb

~100 nb⁻¹

Prompt D

Preliminary

\s = 7 TeV Data

- Use impact parameter of D⁰ direction w.r.t. primary vertex to separate D produced in B decays from prompt.
- Correlate the D⁰ with a muon of a right (wrong) charge

Right sign correlation

Fake D

-2

0.5

Events /

In (IP D⁰

350

300

250

200

150E

100

50

Events / (0.5

D from B

0

In(IP/mm)

Beauty cross-section with $B \rightarrow D^0 \mu X$

Cross section in four η bins, open trigger (~3 nb⁻¹) and muon trigger sample (~12 nb⁻¹) submitted to PLB (arXiv:1009.2731)

Shapes and scales agree well with expectation. Validates QCD predictions at LHC energies

σ (pp→H_bX) = 75.3±5.4±13.0 µb for 2<η<6, any p_T, √s=7 TeV

Extrapolating to 4π with PYTHIA 6.4: $\sigma(pp \rightarrow bbX) = 284 \pm 20 \pm 49 \ \mu b$ Averaging with prel. result from $b \rightarrow J/\psi$: $\sigma(pp \rightarrow bbX) = 292 \pm 15 \pm 43 \ \mu b$

Theory: MCFM 332 μb, NFMR 254 μb

 \rightarrow b rate (at least) as high as assumed in LHCb sensitivity studies.

$b \rightarrow D^0 \mu X$ future prospects

- Same technique can be exploited to reconstruct $b \rightarrow D^+, D_s, \Lambda_b \mu X$ decays.
- Give access to several b semi-leptonic measurements, like b-hadrons fragmentation fractions

Open charm (D⁰, D^{*}, D⁺, D_s) cross-sections

- First measurement at $\sqrt{s}=7$ TeV.
- Measure cross section vs y, p_T in ~2 nb⁻¹, with open trigger.
- Impact parameter distribution used to separate prompt D^{0,+},D⁺, D_s from secondary.
- Good agreement with expectations!

D⁺

1900

1950

LHCb Preliminary 2010

1850

 $M(D^{\pm}) \sigma = 5.80 \pm 0.44 \text{ MeV}$

 $M(D_s) \sigma = 5.89 \pm 0.35 \text{ MeV}$ $N(D^{\pm}) = 218 \pm 18$

Selected K⁺K⁻pi⁺ Candidates

√s = 7TeV

 $N(D_{a}^{\pm}) = 331 \pm 21$

Events 100

80

60

40

20

1800

2050

 D_{s}

2000

 $M(\phi{K^{+}K^{-}}\pi^{\pm})$ (MeV)

2 body charm for mixing and CPV

• Collecting large samples of $D^* \rightarrow D^0 \pi$ tagged events in $D^0 \rightarrow K\pi$, KK, $\pi\pi$

 Immediate opportunity to probe for finite CPV in D⁰ mixing at new sensitivities. A crucial test of the SM vs New Physics.

Charm mutibody for Dalitz analysis

$\mathsf{B}_{(s)} \rightarrow \mathsf{K}\pi, \mathsf{K}\mathsf{K}, \pi\pi...$

- Two body charmless B decays are core to LHCb programme:
 γ angle, loop effects etc.
- Crucial use of PID from RICH and very good mass resolution.

Beauty multibody final states

On the road for tree level γ measurement: many channels and strategies will give a complete picture. Trigger and tracking performing well.

Prospects for $B_s \rightarrow \mu \mu$ at LHCb

Very rare decay in SM, well predicted 0.32) x10⁻⁹. $BR(B_s \rightarrow \mu\mu) = (3.35)$

- Exclusion limit at 90% CL at √s=7TeV
 - Sensitive to NP, in particular new scalars. In MSSM: BR $\propto \tan^6\beta$ / M_H²
 - Sensitivity from MC assuming measured bb cross-section
 - Expectation being confirmed by tests on data.

approaching new limit possible already with 50 pb⁻¹

$B_s \rightarrow \mu \mu$: prospects from data

- Mass resolution measured on B→hh now 26 MeV/c²: getting closer to MC expectation (22 MeV/c²).
- IP resolution approaching MC at high p_T.
- Geometrical Likelihood for B/S separation (combining geometrical, kinematic quantities) :
 - \rightarrow no excess of background in signal region.

MC

signal

10⁴

10³

10²

Prospects for CPV in $B_s \rightarrow J/\psi \phi$

Expected sensitivity

Working on data:

- Signal yield, mass and propertime resolution
- Control channels: preparing auxiliary measurements on B→J/ψX
 - Flavour Tagging

First result possible already with 50 pb⁻¹ data

$B_s \rightarrow J/\psi \phi$: prospects from data

- Rate as expected.
- Propertime resolution not yet as in MC. Expect ~50 fs with new alignment Still very good for B_s physics (would give a ~20% decrease in sensitivity).

Flavour tagging

• First signal of flavour oscillation from $B^0_d \rightarrow D^{*-}(D^0\pi^-)\mu^+\nu$ events.

 "Out of the box" un-calibrated tagging performance (algorythm tuning, tagger combination etc..) already at 60% of expected performance.

Conclusion

- Detector is working very well !
- First important physics results emerging, many more studies underway with present data on production, minimum bias and electroweak.
- With $\approx 50 \text{ pb}^{-1}$ hope to approach or surpass world best sensitivity in:
 - Search for super-rare $B_s \rightarrow \mu \mu$
 - CP-violation in B_s system, e.g. $B_s \rightarrow J/\psi \phi$
 - Search for CPV in D⁰ system.

clear opportunity to enter a new regime in Discovery Physics with 2010 run!

 We are successfully operating in pile-up conditions beyond our design values. Challenge is even greater because we are determined to exploit LHCb fully for charm (as well as for beauty) physics !