CERN-RRB-2004-062 28 April 2004

1

Status of the LHCb Experiment LHCb RRB at CERN 28 April 2004

Tatsuya NAKADA CERN

and

Swiss Federal Institute of Technology Lausanne (EPFL)

Contents of the presentation

- 1) Organizational Changes
- 2) Experimental Area
- 3) Detector Status
 - i) Beam pipe
 - ii) Magnet
 - iii) VELO
 - iv) Calorimeter
 - v) RICH
 - vi) Outer Tracker
 - vii) Muon
 - viii) Silicon Tracker
 - ix) Trigger and Online
- 4) Computing Status
- 5) Cost Matrix Update
- 6) Conclusions

1) Organizational Changes

All the subdetector TDR's have been approved

(last ones for Trigger and Reoptimization in February 2004)
→ complete the project structures

Project	Leader	Deputies							
Exp. Area	D. Lacarrere (CERN)	-							
Magnet	W. Flegel (CERN)	-							
VELO	J. van den Brand (NIKHEF)	M. Ferro-Luzzi (CERN)							
RICH	D. Websdale (ICL)	O. Ullaland (CERN)							
ОТ	A. Pellegrino (NIKHEF)	-							
ST	U. Straumann (Zurich)	O. Steinkamp (Zurich)							
Calorimeter	A. Schopper (CERN)	J. Lefrancois (LAL)							
Muon	G. Carboni (Rome II)	P. Campana (LNF) and B. Schmidt (CERN)							
L0 Trigger	R. Le Gac (Marseille)	-							
Online	B. Jost (CERN)	-							
Offline Computing	N. Brook (Bristol)	-							
Core Software	P. Charpentier (CERN)	-							
Reconstruction	T. Ruf (CERN)	M. Merk (NIKHEF) and O. Callot (LAL)							
Physics	O. Schneider (EPFL)	- 3							

```
Coordination panels for activities across the projects:

Trigger = L0 + L1/HLT

event building

CPU farm \rightarrow Online project

software framework \rightarrow Core software project

reconstruction \rightarrow Reconstruction project

selection \rightarrow Physics project
```

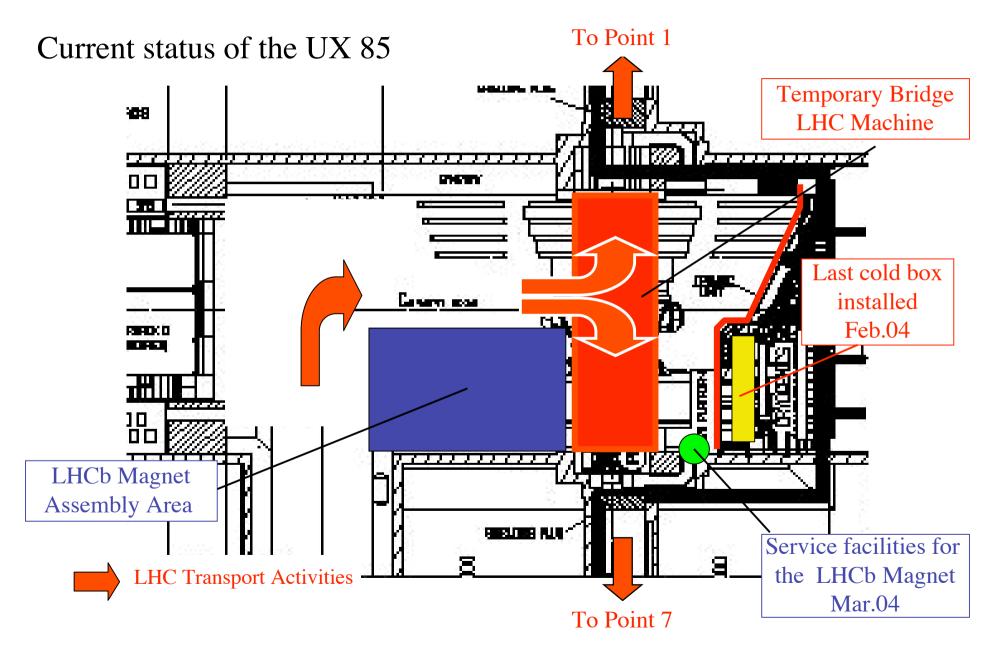
Offline issues = Computing infrastructure + Software + Physics

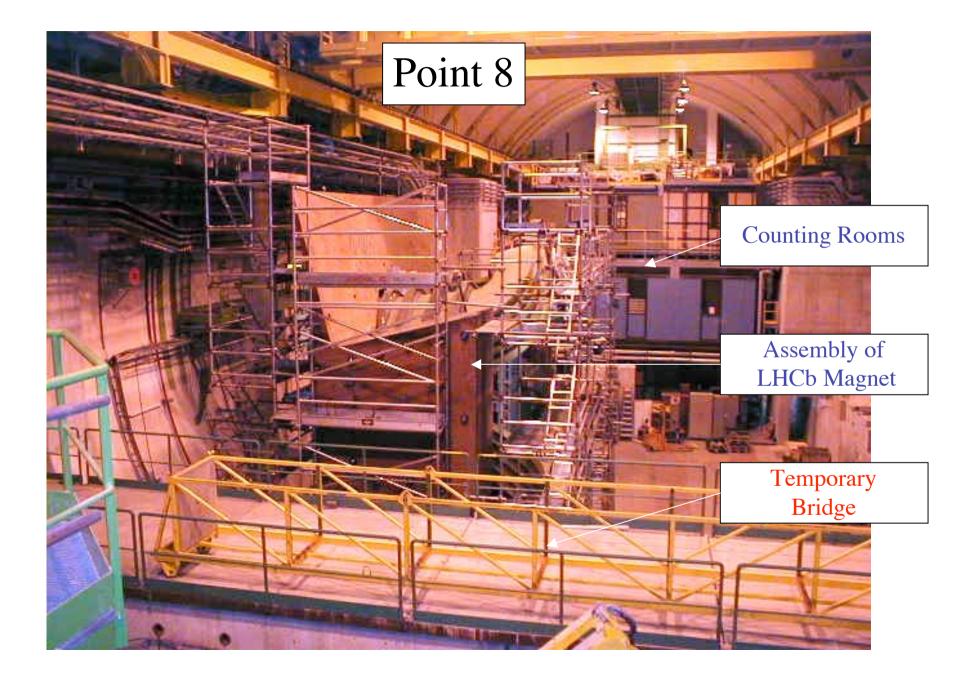
Offline computing project Core software project Reconstruction project Physics project

Coordination Panel	Chair
Trigger	H. Dijkstra (CERN)
Physics, Software and Computing	O. Schneider (EPFL) 4

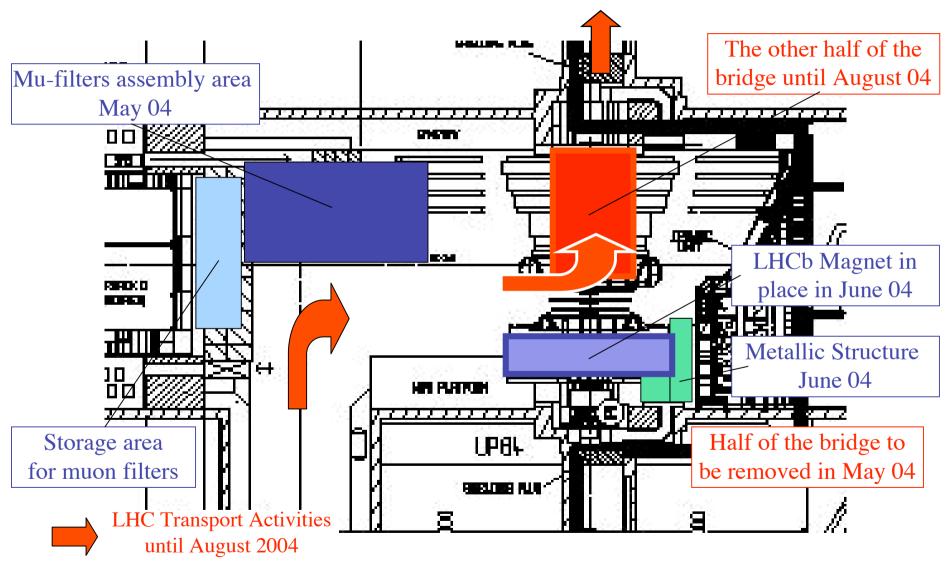
Other experiment coordination	
Electronics coordinator:	J. Christiansen (CERN)
Test beam coordinator:	R. Lindner (CERN)
Installation coordinator:	R. Lindner (CERN)
GLIMOS (Safety)	A. Smith (CERN)

And as before:
Chair of CB
Technical Coordinator
Resource Coordinator
Spokesperson

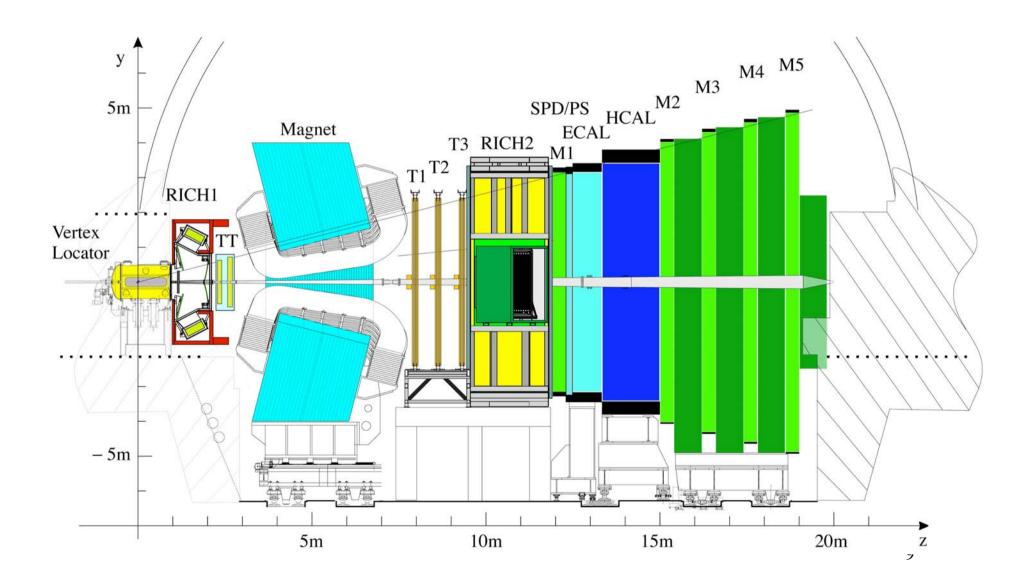

C. Matteuzzi (Milano)W. Witzeling (CERN)A. Smith (CERN)T. Nakada (CERN and EPFL)

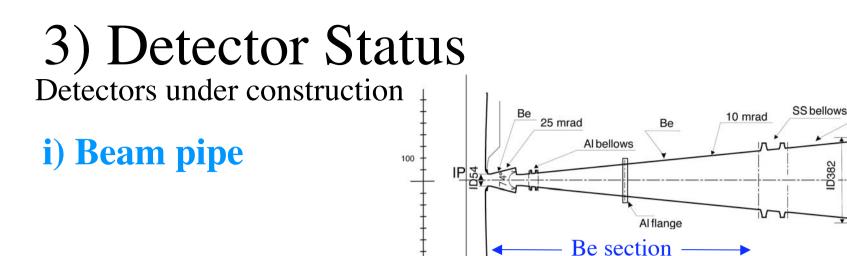

New collaborating institute:

LPNHE (Universités de Paris VI et VII), Paris, France New Technical Associate institute:


University College, Dublin, Ireland

2) Experimental Area





Plans for Q2-Q3/04

The LHCb detector

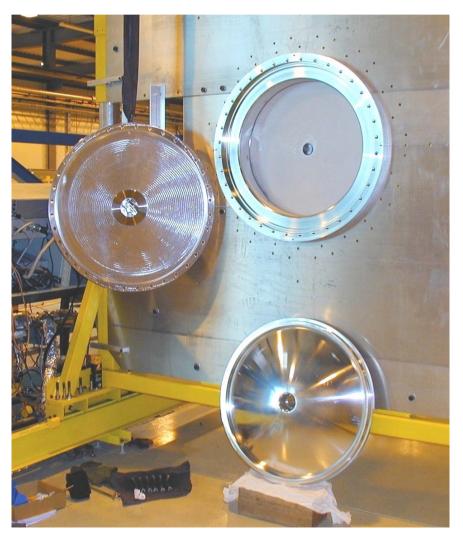
Prototype Be pipe for the 25mrad section qualified as the final product.

All distances in mm

5000

10000

SS


15000

SS bellows

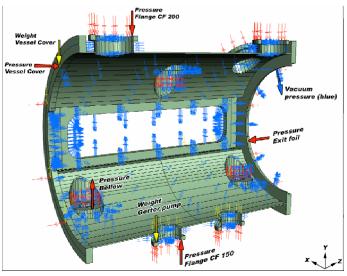
20000

All the Be sections of the beam pipe have been ordered.

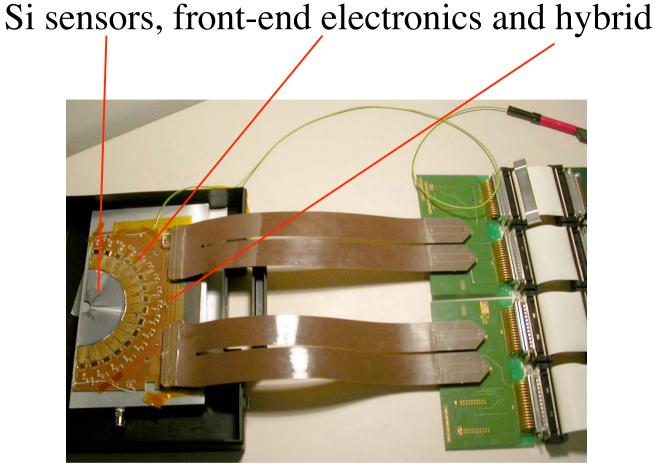

Qualification tests for the Al VELO exit window advancing:

ii) Magnet

construction well advanced


Roll-in to the final position in summer.

iii) **VELO** Production of the vacuum tank mechanics (NIKHEF)


vacuum tank stand and vessel support completed

vacuum vessel ordered

differential pressure control system

Final prototype chain

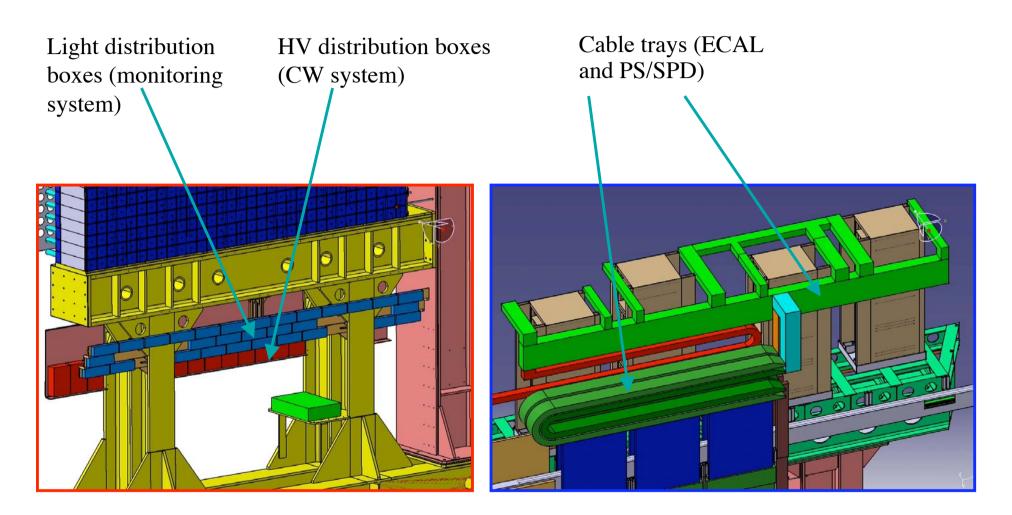
Sensor purchase finalized Hybrid pre-series production Beetle 1.3 engineering run in May

iv) Calorimeter

ECAL module production @ ITEP 100% completed and delivered to CERN HCAL module production @ IHEP 60% completed and delivered to CERN 20 modules still to be produced (production rate = 4/month) PMT's for ECAL/HCAL 2175 delivered (total 7800 tubes, delivery = 625/month) 3 test-benches (LAL, CERN-operated by IHEP, ITEP)

1275 tubes tested, rejection rate <5%

Preshower SPD module production @ INR


17% of tiles completed

10k tiles still to be produced (production rate = 48 tiles/day) PMT's for SPD/Preshower

> 8 stage MaPMT selected 200 tubes needed: order by Summer 2004

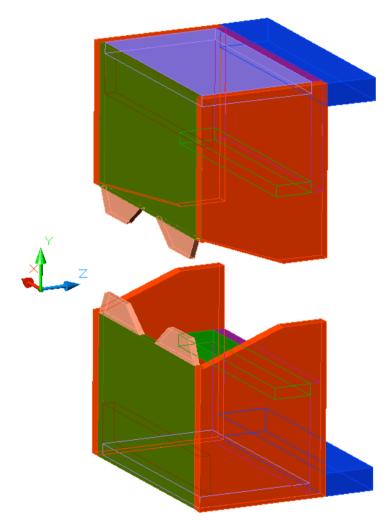
15

Support structure designed (Annecy)

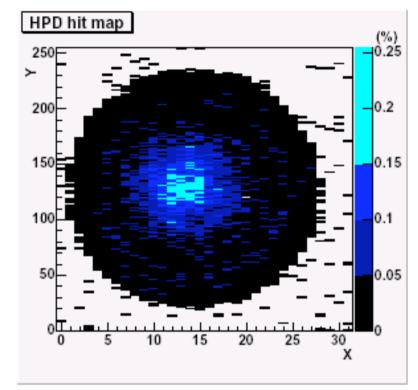
Chariot to be ordered in May followed by electronics platform a few months later.

v) **RICH RICH2** mechanics construction (CERN and UK)

exit/entrance windows



mirror support


superstructure

RICH1 engineering design

magnetic shielding is a challenge L1 trigger vs HPD To be completed by Summer 2004

HPD status

HPD = final choice
Six final prototypes (40 MHz)
five perfect
No problem with the bump
bonding has been detected so far
Tendering procedure in progress

Detectors starting the construction

vi) Outer Tracker

Panel production @ Krakow Chamber production @ Heidelberg, NIKHEF, Warsaw

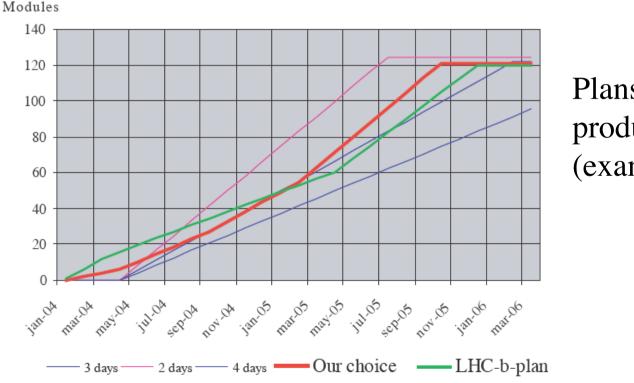
Krakow

Heidelberg

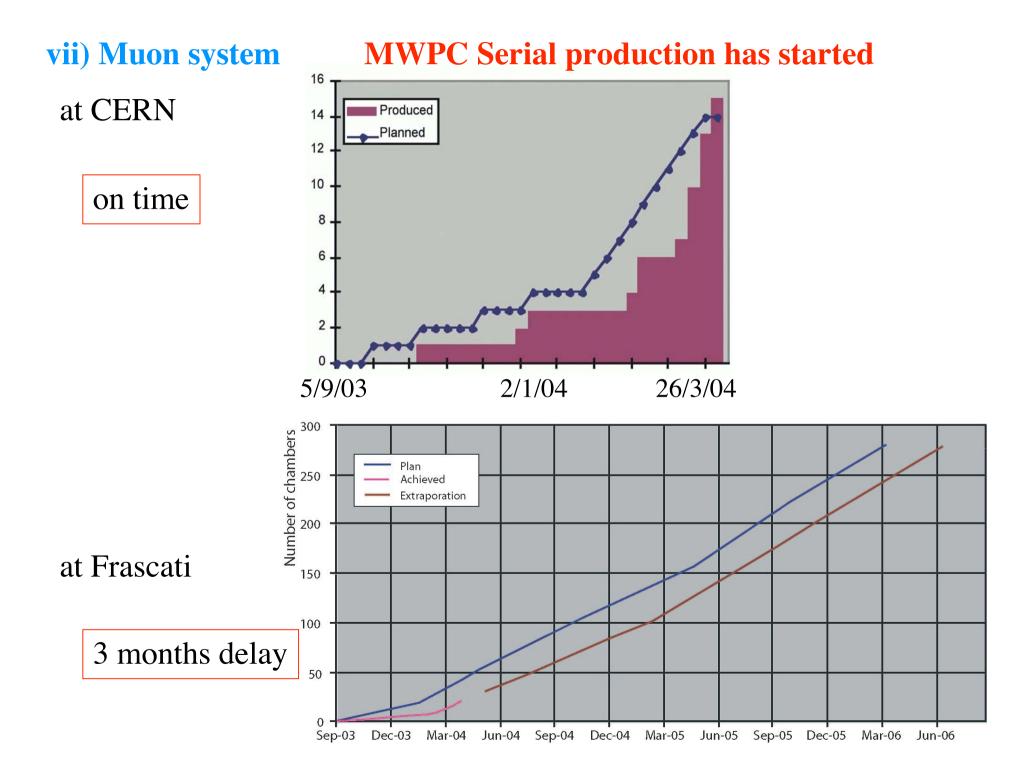
NIKHEF

Warsaw

Effort devoted to bringing all centers into production


All final production tools available in all centers

Quality Assurance in all centers


Exchange information, uniformity of construction and QA procedures

One module produced and tested at Heidelberg Three modules produced and tested at NIKHEF Two modules produced and tested at Warsaw

Late by 4 months compared to the schedule.

Plans to speed up the production rate under study (example @ NIKHEF)

PNPI

wiring machine

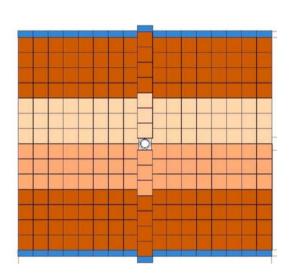
Chamber being glued

Ten chambers produced several months delay

Ferrara

First chamber being produced

Firenze

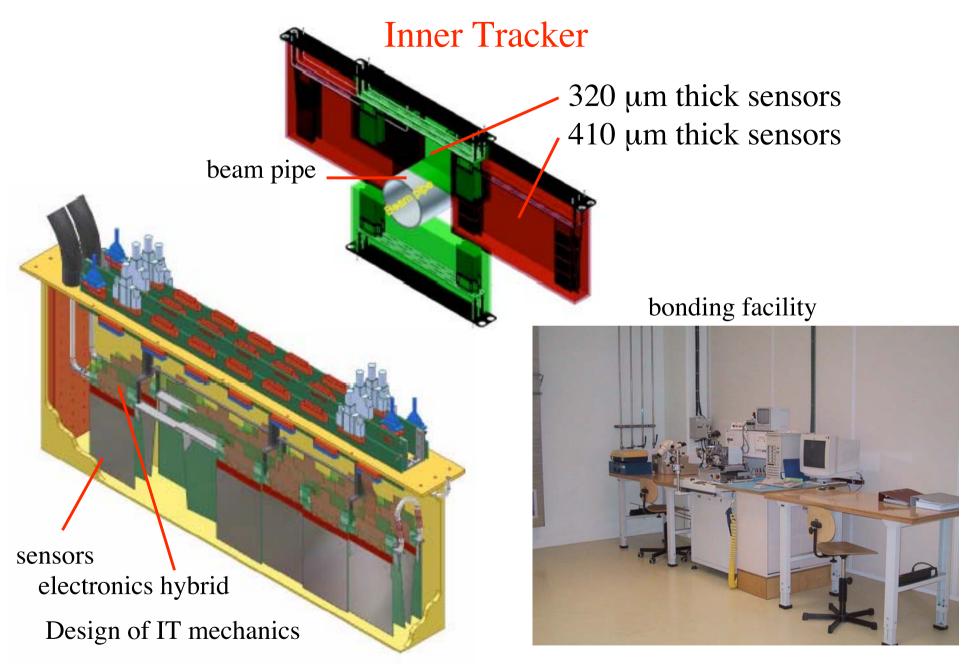

getting ready for production

Subsystem finalizing the engineering design

viii) Silicon Tracker

TT station

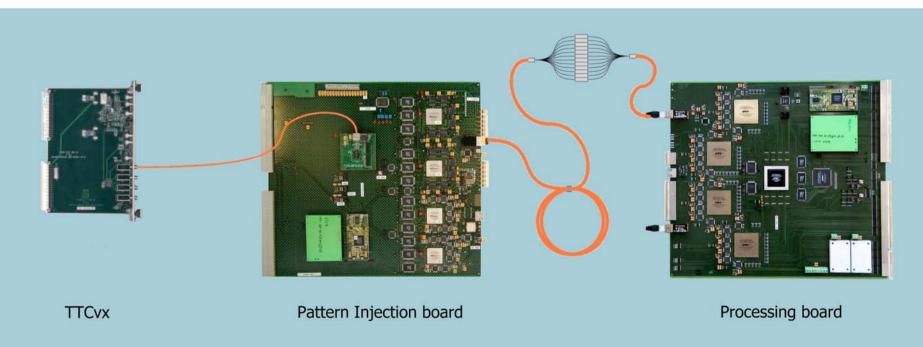
Trigger Tracker


Sensor layout using CMS type sensors

Testing of long Kapton cables

896 sensors, 280 4-Beetle chip hybrids

Sensor (CMS type) order is being prepared. 23


168 (320 μ m) + 336 (410 μ m) sensors are being ordered

ix) Trigger and Online

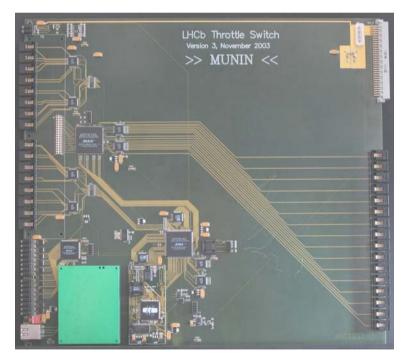
Level-0 Trigger project: finalising and testing the hardware components

- Calorimeter trigger
- Muon trigger
- Pile-up
- L0 decision unit

Example: Muon trigger test system

Level-1 and HLT = software trigger

readout, event building, CPU farm: part of DAQ

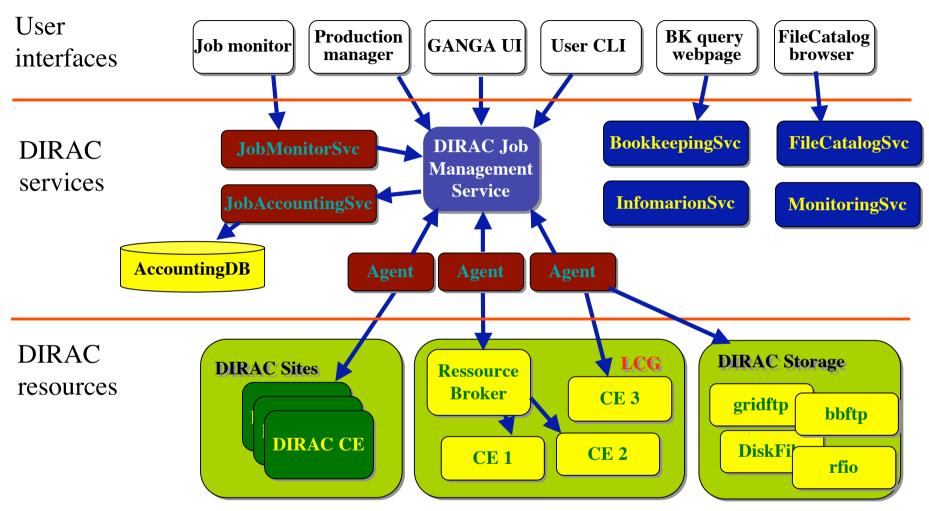

software developed within the general software framework

Online project

DAQ, Readout Control, Experimental Control System Experimental Safety System

Giga-Bit-Ethernet readout board Production and testing prepared by Tsinghua

One of the Readout Control Cards CERN/Warsaw²⁶


4) Computing Status

Aspects of offline computing: Computing infrastructure Core software Application software Subsystem, Event reconstruction, Analysis

Subsystem software is a responsibility of the subsystem projects Software manpower for core software is a remaining problem -trying to maintain the level of manpower (particularly from CERN) -encouraging additional commitment by the outside institutes e.g. software agreement LAL-Orsay, UK institutes, UFRJ, CPPM-Marseille, Spanish institutes prioritizing the tasks

-prioritizing the tasks

Data Challenge 2004

 170 million MC events generation, reconstruction and analysis in a distributed computing environment starting in May

5) Cost-Funding Matrix Update									
Cost	Reminder from the MoU 75.05 MCHF Reoptimization Muon technolog	RRB(October 2003) 72.74 MCHF							
Funding	73.30 MCHF requested	70.86 MCHF MoU signed (or about to be signed) large missing = Brazil \textcircled{S} increased funding = Italy \textcircled{S}							

Agreed guidelines for the revision of Cost-Funding matrix:
1) Move CERN and Common Funds first to balance
2) Move national funding among the already committed subsystems

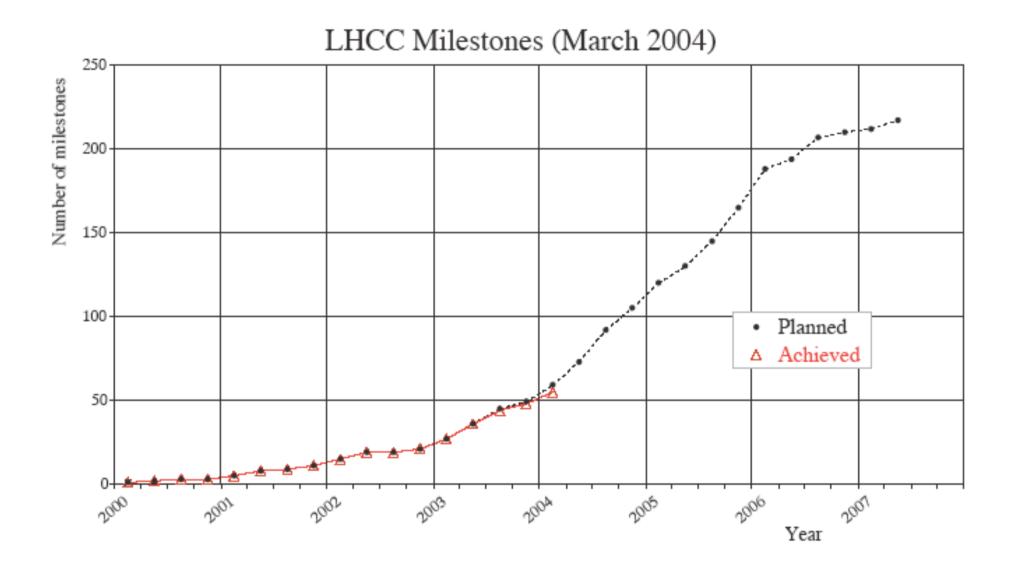
Changes from the time of RRB October 2003 HPD chosen as the RICH photon detector Reduction of the RICH cost: 9566 kCHF → 8486 kCHF (MoU = 7.7 MCHF, change due to reoptimization covered by shifting UK and CERN funding) Total Cost = 72.734 MCHF → 71.654 MCHF

CERN fund is partially used to balance the other subsystems RICH (under funding: 500 kCHF → 0) Silicon Tracker (under funding: 211 kCHF → 0) DAQ+CPU farm (under funding: 1016 kCHF → 667kCHF) This level of under funding can be dealt with by starting with a filter farm with 2/3 of CPU's, if no other solution could be found.

The LHCb collaboration would like to ask the authorization from RRB to use this cost-funding matrix as a base for the future (\geq 2005) budget. ³⁰

	Total		Project	VELO	ST	OT	RICH	PS/SPD	ECAL	HCAL	MUON	L0 Trig		ECS,TFC	Infra	Magnet
	funding	funding	funding										farm	Comp. inf		
Funding Agency																
Brasil																
China	100	28	72			72										
France IN2P3	7 500	2 100	5 400					1 220	2 000	600		1 580				
Germany BMBF	3 757	864	2 893	370	356	2 167										ľ
Germany MPG	2 200	834	1 366		1 366											
Italy INFN	10 000	2 850	7 150		Ī		1 000				4 850					
Italy INFN spec. contr	600		600								600					
Netherlands	6 300	1 800		1 250	Ē	3 000						250				
Poland	500	140	360		Ī	360				1						
Romania	300	90	210		1					210						
Russia	2 500	700	1 800		1			215	582	573	430				1	
Spain	2 000	570	1 430		800			430						200		
Switzerland	7 900	2 2 5 0	5 650	2 142	2 508					=				500		
UK	10 300	2 940	7 360	1 060	1		6 300			1						
Ukraine	200	60	140		70			-		70						
CERN	12 350	3 520	8 830		770		1 186		2 020	1 480	540		1 249	1 585		
CERN spec. in kind contr	4 000		4 000								4 000					
CERN spec. Russian com			350					40	100	100	110					
From CF						631		760	3 210	1 320	400		2 425		4 000	6 000
Total project			52 111	4 822	5 870	5 599	8 486	1 905	4 702	3 033	10 530					
Total CF		18 746				631		760	3 210	1 3 2 0	400		2 425		4 000	6 000
Total funding	70 857	18 746	52 111	4 822	5 870	6 230	8 486	2 665	7 912	4 353	10 930	2 260	5 044	2 285	4 000	6 000
Updated Cost (Sep 03)	71 654			4 822	5 870	6 230	8 486	2 700	7 960	4 400	10 930	2 260	5 711	2 285	4 000	6 000
Funding balance	- 797							- 35	- 48	- 47			- 667			

Several major orders are still to be placed → still some uncertainty in the cost Increase of Chinese contribution being discussed → possible increase in funding ³¹


6) Conclusions

1) Detector construction is advancing well

- Construction of magnet close to its completion
- Calorimeter system and RICH-2 mechanics construction well advancing
- Muon MWPC production started in some centres. Others to follow. Delay in starting up the production; to be followed carefully
- OT production started in three centres. Delay in reaching the production speed; to be followed carefully
- VELO mechanics construction making good progress
- HPD purchase started
- Si sensor purchase started

(delay in purchasing at CERN due to the procedural changes)

- 2) Detector cost is kept within the budget
- 3) Collaboration is committed for Day One physics

