

Status of LHCb and its upgrade

- Collaboration matters
- LHCb 2018 run summary
- Physics output and selected physics results
- The LHCb upgrade
- Conclusions and outlook

G. Passaleva

INFN – Florence and CERN On behalf of the LHCb collaboration RRB – 17/04/2019

- The collaboration keeps growing
 - ★ Los Alamos National Lab group moved from associate member to full member
 - ★ Other groups queuing: discussion at the upcoming Collaboration Board in June

2018 LHCb run summary

A smooth luminosity harvest

- Excellent performance of LHC and LHCb
- Reached the target of 2.5 fb⁻¹ delivered
- Slightly lower data taking efficiency
 - ★ Inefficiency dominated by a few failures due to the obsolescence of the infrastructure
 - ★ Still close to the maximum achievable of ~91%

3.5 2018 (Nb = LHCb/Total) BCMS 144bpi (2332/2556b), 60% eff 3.0 Delivered integrated luminosity [/fb] 0.0 1.1 0.2 0.2 2.0 0.2 0.2 0.2 BCSM 144bpi (2332/2556b), 50% eff BCS 8b4e (1749/1868b), 40% eff Target:2.5/fb Actual MOV TS1 Scrubbing **UD1** + TS2 EYETS 0* Iow E ? TS3 8 **1**D2 90r MD3 MD4 0.0 May 2018 Jun 2018 1412018 AU9 2018 Sep 2018 Oct 2018 NOV 2018 Dec 2018

2018 heavy ion run

- Excellent Pb-Pb and Pb-Ne (fixed target) runs
- Delivered 240 μb⁻¹ in Pb-Pb: x40 the sample collected in 2015!
- Delivered 6x10²⁰ Pb on Ne in fixed target mode: x3 the Pb-Ar sample in 2015
- 90% efficiency
- A gold lead mine ready to be explored!

17/04/19

- Very smooth operations
 - ★ ☞ very stable trigger conditions ☞ easy and quick exploitation of data!
- Real time analysis!
 - RT alignment and calibrations fully automated
- First physics results with the full Run1 + Run 2 already published!

- CPU resource usage dominated by Monte Carlo production
- Optimal usage of the trigger farm helps to reduce the backlog in MC production
- We have now a wide palette of new faster simulation techniques
 - Techniques like reusing many times the same underlying event or simulating only the tracking detectors are already in use with large reduction factors in CPU time

17/04/19

G. Passaleva 7

LHCb 1995-2018: the end (?)

A quick summary of a glorious history

Luminosity 2010-2018: a round 10 fb⁻¹...

 Got exactly the target luminosity that was hinted at the times of the Technical Proposal (~1998)!

	ncluding: 0.04 fb ⁻¹ 2010 0.13 fb ⁻¹ 2017	Excluding: • 0.04 fb ⁻¹ 2010 and • 0.13 fb ⁻¹ 2017 (√s=5TeV)							
tegrated lu	minosity co		Recorded Lumi	Delivered Lumi					
	Recorded	Delivered	Enclency	2011	(pb ⁻¹)	(pb ⁻¹)			
urrent Fill	0.0	0.0	0.0	2011	1.11	1.22			
nnual	2190.9	2456.5	89.2	2012	2.08	2.20			
lag DOWN	1055.7	1174.1	89.92	Run-1	3.2	3.4			
	1100.7	1000.0	00.51	2015	0.33	0.36			
	1133./	1280.8	88.51	2016	1.67	1.88			
010-2018	9227.1	10180.9	90.63	2017 (5TeV)	1.71 (0.10)	1.86 (0.13)			
				Run-2	3.7	4.1			
				Total	6.9	7.5			
				2018	2.19	2.45			
				Total	9.1	10.0			
				27 Nov 2018 - LHCC - N. Tuning					

Hicp ... in a range of running modes!

- Different c.o.m. energies
- Collider mode
- Fixed target mode
- Combined
- p-p, Pb-Pb, p-Pb, p-A, Pb-A (A= He, Ne, Ar)

E (Z TeV)	√s _{NN}									
	рр		Pb-p		Pb-Pb		Xe-Xe			
	$\sqrt{s}=2E$		$\sqrt{s}=2E\sqrt{r}$		$\sqrt{s=2Er}$		$\sqrt{s}=2Er$			
1.38	2.76	2013								
2.51	5.02	2015 2017								
3.5	7	2011	4.40		2.76	2010 LHCb off				
4	8	2012	5.02	2013 2016	3.15					
6.37			8.00		5.02	2015 2018				
6.5	13	2015- 2018	8.16	2016	5.13		5.44	2017		

From the Roadmap document [LHCb-PUB-2009-029]:

1 Introduction

- 2 The tree-level determination of γ
- 3 Charmless charged two-body B decays
- 4 Measurement of mixing-induced CP violation in $B^0_s \rightarrow J/\psi \phi$
- 5 Analysis of the decay $B_s^0 \rightarrow \mu^+ \mu^-$
- 6 Analysis of the decay $B^0 \to K^{*0} \mu^+ \mu^-$
- 7 Analysis of $B_s^0 \rightarrow \phi \gamma$ and other radiative B decays

JHEP 02 (2016) 104, Phys.Rev.Lett.118 191801, LHCb-CONF-2018-002, Phys.Rev.Lett.108 101803, Phys.Rev.Lett.118 021801, Phys.Rev.Lett.110 221601

From the Roadmap document [LHCb-PUB-2009-029]:

RRB - LHCb

JHEP 02 (2016) 104, Phys.Rev.Lett.118 191801, LHCb-CONF-2018-002, Phys.Rev.Lett.108 101803, Phys.Rev.Lett.118 021801, Phys.Rev.Lett.110 221601

17/04/19

RRB - LHCb

G. Passaleva 13

Mission accomplished... and a lot more!

An overview of recent physics highlights

Physics: paper production

• 476 papers submitted (25 since OCT '18 RRB)

- * 41 in 2018, already **19 in 2019**
- ★ 15 other papers being processed within the Editorial Board
- 21 further analyses under review
 - ...a good start!

$\frac{1}{1000} \frac{1}{1000} \frac{1}{1000$

17/04/19

Papers submitted per month

Surprising charming landscapes

- Observation of CP violation in charm
- Measurement of mass difference of D⁰ mass eigenstates

• Opens a new field of investigation

RRB - LHCb

- Count how many D⁰ and anti-D⁰ decay into $\pi^+\pi^-$ and K⁺K⁻
 - \star is If matter = antimatter the number of the two decays should be equal
- For technical reasons we prefer to measure the difference in matter-anti-matter asymmetry between decays into $\pi^+\pi^-$ and K⁺K⁻: ΔA_{CP}
 - ★ should be exactly zero if matter = antimatter
- Result:

$\Delta A_{CP} = (-15.4 \pm 2.9) \times 10^{-4}$

- A tiny but significant (5.3 σ !) difference from zero!
- Roughly compatible with the SM, which however is way more uncertain than data

Full run 1 + Run 2 sample!

Oscillations of charm mesons

- Neutral mesons can "oscillate", i.e. transform into each other: M⁰ ⇒ M⁰
- The two quantum states in which these mesons incarnate when freely flying have slightly different masses m_H and m_L
- $x \equiv \tau \Delta m$, $\Delta m \equiv (m_H m_L)$ determine how fast they transform into each other.
- The value of x is very tiny for charm mesons: no confirmation that this is not zero until now!
- Can be enhanced by the presence of new particles beyond the SM
- Recent smart and precise measurement by LHCb provide the most precise determination of x by a single experiment $x = [2.7 \pm 1.6(stat) \pm 0.4(syst)] \times 10^{-3}$

arXiv:1903.03074 Run1 3 fb⁻¹

G. Passaleva 20

- New WA provides first evidence of a mass difference between the neutral D mesons
- Another step into precision charm physics

•

Precision is our business

- Measurement of the B_s mixing phase ϕ_s

Combined value approaching the sensitivity to observe a non zero value!

New measurement of the B_s mixing phase ϕ_{s}

- Measure the phase difference between the two processes
- Precisely determined within the SM: ϕ_s^{SM} = (-37.4 ± 0.7) mrad
- VERY sensitive to contributions from new particles beyond the SM
- Very high precision measurement
- LHCb uses two decays: $B_s \rightarrow J/\psi \phi$ and $B_s \rightarrow J/\psi \pi \pi$
- New result just released using part of Run 2 data, combined with Run 1 yields

 ϕ_s = (-40 ± 25) mrad

[LHCB-PAPER-2019-013 Run2 1.9 fb⁻¹]

Rare decays, a window on new physi

 Test of lepton flavour universality: new measurement of R(K)

Tests of lepton flavour universality

- INFN
- Lepton flavour universality can be checked in several B meson decays involving leptons in the final state
- Two main classes of decays have been studied:
 - ★ Semileptonic $B^0 \rightarrow D^{(*)-} I^+ v$ tree level decay
 - ★ b→Sl⁺l⁻ decays e.g. $B^0 \rightarrow K^{(*)0}l^+l^-$ FCNC decays
- Observables:

 $R(D^*) = \frac{BF(B \rightarrow D^* \tau v)}{BF(B \rightarrow D^* \mu v)} \stackrel{\text{SM}}{=} 0.252 \pm 0.003$

$$R(K^{(*)}) = BF(B \rightarrow K^{(*)}\mu^+\mu^-)/BF(B \rightarrow K^{(*)}e^+e^-) \gtrsim 1$$

• Theoretically clean!

Tests of lepton universality: R(K) and R(K^{*})

[Phys. Rev. Lett. 113 (2014) 151601, JHEP 08 (2017) 055 Run1 3 fb⁻¹]

Test the LFU in electroweak penguin decays (e.g. the class of FCNC decays $b \rightarrow sl^+l^-$)

• Old results for R(K) and R(K*):

[Phys. Rev. Lett. 113 (2014) 151601]

[JHEP 08 (2017) 055]

\sim 2-2.5 σ away from SM

Hee Tests of lepton universality: new measurement of R(K)

 $R_{K} = 0.846^{+0.060}_{-0.054} (stat)^{+0.016}_{-0.014} (syst)$

- Situation essentially unchanged: still 2.5 σ away from the SM prediction
 - Better precision but central value closer to the SM
- Need more data: inclusion of 2017+2018 data will double the statistics

- Other measurements in preparation
- ★ Update of R(K*), other decay channels 17/04/19

[arXiv:1903.09252 Run1 + Run 2 5 fb⁻¹]

Spectroscopy: new peaks on the horizon

- New state in D^0D^0 and D^+D^- mass spectra
- Observation of new pentaquark states

Observation of a new state in DD mass spectrum

- D mesons keep providing surprises !
- New state observed in the invariant mass spectra of D⁰D⁰ • and D⁺D⁻, likely to be $\psi(1^{3}D_{3})$
- First observation of a spin 3 charmonium state! 0

4.15

 $[\text{GeV}/c^2]$

Several other charmonium states observed in the same spectra

- Two charged states: one narrow dubbed $P_c(4450)$ and one broader dubbed $P_c(4380)$, decaying into J/ ψ p
- Great theoretical interest in understanding the nature of the new states
 - ★ Tightly bound vs molecular states

[arXiv:1904.03947 Run1 + Run 2 9 fb⁻¹]

- Update by LHCb using full Run 2 statistics
- A new peak now emerges from background! P_c(4312)
- In addition, the P_c(4450) reveals now a more complex structure with two different peaks
- Further confirmation of the previous pentaquark discovery
- Extremely important new input to shed light on the nature of these exotic states! ^(*)
- (*) submitted one week ago, already >10 papers published on arXiv on the subject

Upgrade

A look to the *future* present

[CERN-LHCC-2012-007]

All sub-detectors read out at 40 MHz for a fully software trigger

LHCb Upgrade in snapshot

17/04/19

RRB - LHCb

G. Passaleva 33

Upgrade: installation

Preparing the ground for the new season

Very intense activity at LHCb site!

- Activities to dismantle the old sub-detectors progressing very well and on schedule
- Impressive organization!
- Preparation of infrastructure also progressing well
- Prepare for the first installations in summer
- Watch our weekly videos! <u>https://www.youtube.com/watch?v=CKLu1xewv7I</u>

HLT farm containers

Removing the beam pipe

G. Passaleva 35

Dismantling of M1 muon station

Removing the old VELO

Upgrade: construction

Building for success

LHCb upgrade: VELO

- VELO project progressing very well, although schedule tight given the complexity of the project
- Start of the production of the 52 modules imminent
- Other components progressing on schedule
- Mechanics progressing well
- RF foil production ongoing

Isolation volumes

Full VELO modules

Velo module test setup

G. Passaleva 37

LHCb upgrade: UT

- Sensors: received all A-type, and B,C,D preseries.
- Readout electronics: production started
- Flex cables pre-series available, under test
- Bare staves: production finished
- Integration infrastructure at progressing full speed

Detail of the fixation of flex cables to the readout electronics

Prototype stave shipped at CERN

17/04/19

G. Passaleva 38

LHCb upgrade: UT

- SALT v3 received and tested
- Issues seen in the previous version largely fixed
- Tested on beam at Fermilab. Results very encouraging
- Go for production
- ASIC finalized I finalise hybrid and start production
- hybrid Q&A and assembly tools ready

SALT v3 wire-bonded to a sensor

- Modules: production completed
 - A large pile stacked at CERN. Final tests ongoing
- Electronics: in mass production
- Production of cold boxes started
- C-frame construction underway

Assembly of module + cold box

Modules assembled on the prototype C-Frame

Prototype C-frame in construction at P8

- To be produced for RICH1+2: 22+24 = 46 columns (+spares)
 - ★ MaPMTs: all 3500 tested
 - ★ CLARO: full prod received, 100k, QA 100%
 - ★ Digital readout board (PDMDB): production pf PCBs completed, first complete board being received
 - ★ Readout boards production and QA started
- Dismantling of RICH1 well advanced on schedule

PDMDB

Setup for Q&A of readout boards

- To be produced: electronics boards + shielding plugs
 - ★ All electronics in production
 - ★ ASICs:
 - ICECAL chips in hand and tested
 - nSYNC all received and tested
- New shielding plug, 3 parts, design finalized, order placed in December, parts expected in the coming month
- On schedule for installation and commissioning, starting ~now

Details of the new Muon shielding

VTTX

VTRX

CALO FEB 278 needed +21 CB +144 HV/Calib/Moni

> Muon nODE 148 needed

+120 nSB +8 nPDM

G. Passaleva 42

LHCb upgrade: Online and computing

- Containers for Event Filter Farm and Evt Builder:
 - First 4 EFF modules installed 2 morein Nov 2019
- **Event Builder:**

17/04/19

- ★ simulation of traffic is now working for 500 nodes and gives confidence in scalability of system.
- Vertical Slice Test will allow checking simulation results at a scale of 20% of the final system.
- Decide on Event Builder technology after a review in May ۲ 2019

First PCIe40 ready at contractor

- Both approved by Research Board
- Very fruitful review by the LHCC

- Created to organize the development, operation and maintenance of the all-software trigger
- Large collaboration effort (> 50 FTE)

CERN

• LHCb has a unique fixed target physics programme at LHC

- ★ Based on injection of gas inside the LHC beam pipe at our interaction point (the "SMOG" system)
- ★ Can inject noble gases He, Ar, Ne
- ★ Heavy ions
- ★ Cosmic ray physics

• Now upgrading it

- ★ Storage cell for better confinement of gas
- Can in principle use more diverse gases e.g. H, D, N, O (cosmic ray physics)
- ★ Approved by LHCC and LHC panels
- ★ Will be installed in LS2

[Phys. Rev. Lett. 121 (2018)]

Measurement of antiproton production in pHe collisions at $V_{S_{NN}}$ =110 GeV

Technical drawing of the gas storage cell to be installed inside the VELO

Conclusions and outlook

- 2018 run completed a successful first phase of LHCb
 - ★ Collected record luminosity in proton-proton and Pb-Pb
 - ★ We were delivered 10 fb⁻¹ which was the goal in our Technical Proposal in 1998 !
- LHCb continues to provide a wealth of excellent physics results
- The march towards the upgrade I is continuing
 - ★ All subsystems progressing installation ongoing!
 - ★ Schedule is tight, working hard to be ready for LHC Run 3!
- Looking into the far future:
 - ★ Expression of Interest for future upgrades submitted
 - \star Physics case document released
 - ★ Green light from LHCC to proceed to TDRs
 - ★ A lot of opportunities !

17/04/19

G. Passaleva 48

Thank you !

BACKUP SLIDES

Upgrade II

LHCb Upgrade II: the ultimate exploitation of LHC for flavour physics

- Aim to fully exploit HL-LHC for flavour physics and other opportunities in the forward direction
- Aim to collect > 300 fb^{-1} at L = 2×10^{34} , $\times 10$ with respect to Upgrade I
- Consolidate in LS3, Major upgrade in LS4
- Expression of Interest issued in 2017
- Feasibility study performed by LHC experts [CERN-ACC-NOTE-2018-0038]
- Physics case document released
- Green light from LHCC to proceed to TDRs (expected ~late 2020)

Hick Physics Case – CKM unitarity triangle evolution

17/04/19

RRB - LHCb

G. Passaleva 53

CERN

INFN