

LHCb limitations: \checkmark limit the number of visible pp-collisions/bunch
crossing to $\mu_{max} \sim 2$ (2.5 at start-up) \checkmark limit the peak luminosity to L $\sim 3.10^{32}$ cm⁻² s⁻¹

- \rightarrow need to increase number of bunches to \geq 700 to reach "nominal" LHCb luminosity
- \rightarrow luminosity leveling essential to keep μ and lumi to optimal value
- → will run with flat luminosity throughout most of the year, so cannot "catch-up" on integrated luminosity during the year
- \rightarrow need to continue to increase number of bunches (even at nominal lumi) to reduce μ
- \rightarrow expect \geq 200 pb⁻¹ by end of June and ~1 fb⁻¹ by the end of 2011

Results obtained thanks to the LHC performance, the luminosity leveling and the excellent running of LHCb detectors (~99% of channels operational)

- Ideal running conditions achieved with long fills (> 15 h; ~ I pb⁻¹/h)
- Best week ~ I30 pb⁻¹
- Average ~ 50-60 pb⁻¹
- L0 rate ~ 850 kHz
- Farm operating at limit of throttling
- HLT (physics) ~ 3 kHz
 - I kHz b→hadrons
 - I kHz b→muons
 - I kHz charm (NEW !)
- Data taking efficiency > 90%
- Quality of data ~ 99% OK

Sub detector status (all working very reliably !)

- VELO fast and fully automatic closing; radiation effects agree with expectations
- TT/IT currents observed in 2010 reduced by kapton shielding and by slow ramp-up of luminosity
- OT stable operation, no sign of aging, continuous monitoring
- RICH angle resolution equal to MC expectations; some repaired HPD show ion feedback; box for Aerogel under completion, ready for 2012 run
- CALO showing first sign of aging, well under control: no degradation of ECAL (need to adjust PM HV), very good energy resolution after calibration
- MUON no. of tripping chambers greatly reduced thanks to intense HV training
- ONLINE new farm (Swiss) and new network (Cern) fully operational

υ

ECAL π^{0} mass peak/resolution

(MeV/c²)		All
2011 early data	μ	135.07± 0.03
	σ : σ/μ	7.60± 0.06 5.6%
2011 data (march->june)	μ	129.90± 0.02
	σ : σ/μ	9.01±0.04 : 6.9%
2011 data re-calibration (march->aug)	μ	133.22± 0.01
	σ: σ/μ	7.75± 0.04 5.8%

No losses in photoelectron statistics

B mesons mass resolution

All values very near to Monte Carlo expectations

Computing & data processing

- Reconstruction output: 3 kHz with ~130 kB/event \rightarrow ~ 400 MB/s
- Stripping output: 300 Hz \rightarrow ~ 40 MB/s

Draconian campaign during summer to stay within bandwidth design value and available disk space (note: charm was not in our Computing Model)

 Now ready to re-process the full 2011 dataset (~1 fb⁻¹) with the available disk space (but limited margin for Monte Carlo production) Reprocessing of 2011 dataset for
 Winter Conferences ready in
 December
 → Shortage of disk space to store

the Physics data LHCb is producing

 Tier1 & Tier2 grid working efficiently: fair share CERN/Tier1 (no CPU limited)

LHCb constraining Supersymmetry

G. Isidori, ICFA Seminar, 2011

- BR($B_s \rightarrow \mu\mu$) puts strong bounds on tan β at least in MSSM, complementary to direct searches and in tension with g-2
- LHCb result enters into SUSY models fits

• LHC 2011 MET searches and $B_s \rightarrow \mu\mu$

 $D(D^{\circ} \rightarrow N^{\circ} | 1) = (3.3 \pm 1.0) \times 10^{\circ}$

•B⁰Described by + -

- three angles: θ_l , φ , θ_k
- Flavour changing neutral current decay:

 - $\mu\mu$ invariant mass: q² Br(B⁰ \rightarrow K*l⁺l⁻) = (3.3 ± 1.0) x 10⁻⁶
 - Excellent probe of helicity structure of
 - Described by sics
- F. H. R. Harthard -backward asymmetry A_{FB} vs. q^2 $\mu\mu$ invariant mass: q^2
- avour champling productal builting structures.of New Physics
- $Br(B^0 \xrightarrow{\to} K^{*|+|-}) = (3,3,\pm,0) \times 10^{-6}$ Esp. lepton forward backward asymmetry A_{FB} vs. q^2 : 6

14

- Data in excellent agreement with SM
- Next : determine q₀², and variables sensitive to RH currents (A_T⁽²⁾)

- Select data with multivariate techniques
- Very good yield and S/B (comparable to B factories)
- Fit in bins of θ_{I} , $\Phi, \ \theta_{K}$, and q^{2}
- Extract A_{FB} and F_L: systematics very small and results statistically limited

Status and perspectives of ϕ_s measurement

Previous tensions with SM observed by CDF and D0 not confirmed Incompatibility with A_{SI} result from D0 (to be tested soon by LHCb)

Still a lot of room for New Physics LHCb expects a precision of 0.1 rad with 1/fb data sample

Next step: measure CP asymmetries

The yields • Largest $B_s^0 \rightarrow \phi \gamma$ signal observed! • The $B^0 \rightarrow K^{*0}\gamma$ is getting close to BABAR. 20

Towards the measurement of γ (tree diagrams)

- Time integrated ADS method (B→DK, interference between B and D suppressed decay modes)
- Very small branching ratio: ~ 10⁻⁷
- LHCb data: world best

$$A = \frac{\Gamma(B^- \to f_D K^-) - \Gamma(B^+ \to \overline{f}_D K^+)}{\Gamma(B^- \to f_D K^-) + \Gamma(B^+ \to \overline{f}_D K^+)}$$

 $A_{ADS} = -0.39 \pm 0.17 \pm 0.02$ $R_{ADS} = (1.66 \pm 0.39 \pm 0.24) \ 10^{-2}$

Towards the measurement of γ (loop diagrams)

- Measurement of time integrated asymmetries in B→hh decays
- Ist evidence of CP violation in B_s system
- Best single measurement of A_{CP} (B_d) and new element for the A_{CP} "puzzle"

Next step: time dependent asymmetries 22

The "beauty" of charm

- LHCb can profit of the huge charm production cross section at the LHC (~6 mb): I kHz out of 3 kHz of the HLT output dedicated to charm
- Complication: evaluate asymmetry coming from initial pp state

A_{Γ}: compare D⁰ and D⁰ \rightarrow KK lifetimes [tagged samples]

$$A_{\Gamma} = \frac{\tau(\overline{D}{}^0 \to K^- K^+) - \tau(D^0 \to K^+ K^-)}{\tau(\overline{D}{}^0 \to K^- K^+) + \tau(D^0 \to K^+ K^-)}$$

Y_{CP}: compare lifetime of $D^0 \rightarrow CP$ eigenstate, (KK or $\pi\pi$), to $D^0 \rightarrow$ noneigenstate (K π) [untagged samples]

$$y_{CP} = \frac{\tau(K^- \pi^+)}{\tau(K^+ K^-)} - 1$$

Results presented at EPS, based ONLY on 2010 data (~35 pb⁻¹)

 $A_{\Gamma} = (-0.59 \pm 0.59 \pm 0.21)\%$

c.f. WA of $(0.12 \pm 0.25)\%$

 $y_{CP} = (0.55 \pm 0.63 \pm 0.41)\%$

c.f. WA of $(1.11 \pm 0.22)\%$

Missing items (not enough time to discuss them ...)

25

. –

Status of the Upgrade (I)

April 2011: LOI submitted to LHCC

- LHCC(1): endorsement of physics case for the upgrade
- LHCC(2): setup a peer review of the 40 MHz option

June 2011: LHCC(3): positive evaluation of reviewers. "Go ahead" with TDR work and request for intermediate assessment ("framework document")

"40 MHz" upgrade scheme:

- new FEE everywhere, but MUON
- new tracking layout (VELO TT IT part of OT)
- new photo sensors on RICH
- software trigger (efficiency for hadronic channels ~ double)
- consolidation for OT CALO MUON
- new TOF detector (TORCH)

Goals:

- Operate the detector at $\geq 10^{33}$ cm⁻²s⁻¹ @ LHC with 25ns spacing
- Start of upgraded LHCb: 2019
- Collect \geq 50/fb in 10 years with enhanced hadronic trigger

Status of the Upgrade (II)

- Upgrade Steering Group in force since 1.7.2011
 Three lines of activity: Tracking (VELO, IT, ST, OT) PID (RICH, CALO, MUON) Electronics & data processing. Not a replica of existing Projects
 Goals: harmonize efforts, setup milestones for technological choices, bring
 subsystems to TDR, define common projects
 First workshops already ongoing before end 2011
- Preparation of a "framework document" in 2012 containing:
 - List of technological options and preliminary schedule
 - Definition of milestones for having TDR(s) ready by 2013
 - Preliminary evaluation of detector cost & resources needed
 - Preliminary definition of common projects
 - List of Institutes/Funding Agencies interests
 This document should be submitted to LHCC as "Addendum to LOI"
- Intense R&D ongoing to prepare TDR (\rightarrow resources needed)

Collaboration matters

- T. Gershon (Warwick) is the new Physics Coordinator (as of 1.1.2012)
- S. Hansmann-Menzemer (Heidelberg), M. Ferroluzzi (CERN), R. LeGac (Marseille) and G. Wilkinson (Oxford) have been appointed in the Upgrade Steering Group
- A group from Rostock University became associated member (host Institute: Heidelberg University)
- A group from Cincinnati University is applying to become LHCb member (Babar - interests in charm physics, HLT and upgrade). Negotiations with LHCb well advanced. Grant application to NSF due by end of October

Conclusions

LHCb is performing very well. Thanks to LHC Team (and to luminosity leveling technique) has collected over 1 fb⁻¹ in the 2011 run

Analyses in core physics channels are already well advanced, with 3 areas of "world record" measurements: $B_s \rightarrow J/\psi \phi$, $B_s \rightarrow \mu\mu$, $B_d \rightarrow K^* \mu\mu$

Standard Model still "uncracked" but large room for New Physics LHCb is complementing ATLAS&CMS limits for Supersymmetry

A lot of activities and very good perspectives for "world record" measurements with 1 fb⁻¹ in CPV in b and c decays, CKM angle γ , radiative and rare decays + a very large spectrum of physics items

Looking forward to increase (x 2 and even more) the statistics in 2012

Working hard to prepare LHCb future (Upgrade)

Murayama, ICFA Seminar, 2011 CERN

