CERN-RRB-2002-136

1

Status of the LHCb Experiment

RRB meeting 23 October 2002 CERN, Geneva on behalf of the LHCb Collaboration Tatsuya Nakada CERN and University of Lausanne

Contents

1) General Issues -milestone status -LHCb organization -MoU status 2) LHCb-light Status 3) Subsystem Status 4) Summary

1) General Issues

Milestone status

3

LHCb organisation; (new appointment)

CALOrimeter (SPD, Preshower, Ecal, Hcal) Project Leader Deputy Magnet Project Leader Muon Project Leader Deputy Deputy **Outer Tracker** Project Leader RICH (RICH-1, RICH-2) Project Leader Deputy Silicon Tracker (TT, IT) Coordinator Deputy

A. Schopper (CERN) J. Lefrancois (LAL)

W. Flegel (CERN)

G. Carboni (Rome II) P. Campana (Frascati) B. Schmidt (CERN)

A. Pellegrino (NIKHEF)

D. Websdale (ICL) O. Ullaland (CERN)

U. Straumann (Zurich) O. Steinkamp (Zurich)

Trigger (Level-0, Level-1, HTL)			
	Coordinator	H. Dijkstra (CERN)	
	VErtex Locator		
	Project Leader	T. Ruf (CERN)	
	Computing (Online, Offline)		
	Coordinator	J. Harvey (CERN)	
	Experimental Coordination		
	Electronics	J. Christiansen (CERN)	
	Experimental area	D. Lacarrere (CERN)	
	Test beam	R. Lindner (CERN)	
	Task force coordination		
	Particle identification	R. Forty (CERN)	
	Physics	O. Schneider (Lausanne)	
	Tracking	M. Merk (NIKHEF)	
	Technical Coordinator	W. Witzeling (CERN)	
	Resource Coordinator	A. Smith (CERN)	
	Coll. Board Chair	C. Matteuzzi (Milano)	
	Spokesperson	T. Nakada (CERN/Lausanne)	5

Construction MoU signature status

New signature:

China

Vice President of Tsinghua University, Beijing has signed MoU for their contribution to the common project and OT.

Still to be signed:

Brazil Germany, BMBF Discussion is in progress so that the participating institutes will sign Poland

Already signed:

France, Germany (MPI), Great Britain, Italy, The Netherlands, Romania, Russia, Spain, Switzerland, Ukraine

2) Status of LHCb-light

7

Design not affected

VELO, T1 to T3 (OT and IT), RICH-2, CALO and Muon proceed toward the construction

Re-design needed

RICH-1: modify mechanics and optics to shield photon detectors TT: change from straw/Si combination to all silicon detector to be used in the L-1 trigger.

Will be presented to LHCC in due time

Validate the tracking system with reduced number of tracking stations. NB: reduced from 11 (TP) to 9 (OT TDR) to 4 (now LHCb-light)

First round of high statistics (>1M events) performance study with new software environment (discussed later).

Despite of usual "running-in" problems in the new software , e.g. -detection efficiency of some detectors smaller than it should have been, -fully optimized track finding strategy not yet in place -track fit not fully tuned -vertex resolution not well understood (nothing to do with light set-up) etc.,

initial results are very encouraging.

track finding efficiency > 90% for p>5 GeV/c ghost rate $\approx 30\%$ From 0.6M bb inclusive events no background remains. Event yield close to TP.

LHCb-light TDR submission

Originally planned toward the end of 2002 → postponed to September 2003

Need to complete

a) physics performance study with

-improved reconstruction and analysis software

-much higher bb statistics for the background study

and

b) the designs for RICH-1 and TT.

This delay does not compromise the overall LHCb plan.

3) Subsystem status Experimental area

Completed:

Concrete reinforcement of the head-wall Cutting of the ex-DELPHI concrete shield in the RB84 Area

Installation of the magnet support beginning of 2003.

Re-installation of the General Services in the UX85 Cavern to be completed by Spring 2003

Magnet [funding from Common Fund (CF)] Al conductor from Holton Machinery LTD, UK delivered to ⇒ SigmaPhi,

SigmaPhi, France for the coil construction

4 triplets potted (a total 10)

24 pancakes wound (a total 30)

Iron (600 t) for yoke is ready to be cut at Jebens, Germany

Magnet planned to be installed by the end of 2003 in IP8¹⁴

Calorimeters (ES, FR, RO, RU, UA, CERN, CF)

ECAL series production well advancing at ITEP Moscow 1200 modules arrived at CERN (out of a total 3300)

HCAL series production started at IHEP Protvino 2 modules arrived at CERN (out of a total 52)

fibre cutting machine developed by Novosibirsk

1200 ECAL and 2 HCAL modules in Hall 156

SPD and Preshower: preparation for series production at INR Moscow

Two modules of outer section geometry manufactured in May-June 2002 using technology to be applied for mass production.

VELO (CH, DE, GB, NL) Prototyping of the critical items for the vacuum tank

Al RF shield

rectangular bellow

Decision of the front-end chip: SCTA-VELO (Dmill) vs Beetle (0.25µm) beginning of 2003

Beetle 1.1 + Hybrid for test beam

SCTA-VELO lab test set-up

200350% of Si sensors to be orderedhybrid production to be started

Muon

(BR, IT, RU, CERN)

After careful aging study, RPC's were abandoned.

Continuous increase of resistivity of the plates resulting in loss of rate capability.

Number of MWPC's increased: $864 \rightarrow 1344$ Construction plan being worked out; extra site or more chambers/site?

Preparation for series production in progress: tools and site wire pitch measurement device at CERN and PNPI

DIALOG (digital chip after discriminator) developed in Cagliari

2003 MWPC production sites ready

RICH (GB, IT, CERN)

RICH-2 passed the Engineering Design Report. Construction will starts soon.

mirror support prototype

composite window prototype

Photon detector remains the critical item: HPD development

positive progress in bump-bonding

old "Stretched" bump bond

Assemblies with the new bump bonding procedure survive bake-out PGA ceramic carrier Kovar ring Eump-bonded sensor/chip assembly fraction of working pixels

fraction of working pixel		
Before	After	
99.93 %	99.60 %	
99.83 %	99.84 %	
99.99 %	99.99 %	

new "Relaxed" bump bond New prototype HPD by the end of 2002

LHCb pixel chip works at 40 MHz

Noise and threshold characteristics satisfy LHCb RICH requirements Threshold < 2000e

Noise < 300e

MAPMT remains as backup solution: front-end chip prototype being produced (Beetle adjusted for the PMT input signal)

Orders for RICH-2 mirrors and superstructure in 2003

Outer Tracker (CN, DE, NL, PL, CERN, CF)

Tidying-up details of the chamber design: e.g.

improving the wire locator design for noise reduction

gas tightness and mechanical stability test

TDC (OTIS 1.0)

Construction of the panel is ready

produced at Cracow

Preparation of the clean rooms in the three production sites:

-NIKHEF being assembled -Heidelberg being extended -Warsaw ready

Acquisition of chamber material in 2003.

Inner Tracker (CH, DE, ES, UA)

test beam set-up

Si sensor parameters 320 µm thick 198 µm strip pitch 2×11 cm strip length

TDR mechanical design completed

full scale model to test mechanical and cooling properties

TDR will be submitted in November 2002 as planned.

Basic designs of Level-0 trigger components have been completed and prototype works are in progress.

Level-0 muon trigger optical link test set-up Calorimeter trigger crate back plane

Level-0 pile-up veto prototype

Level-0 decision unit prototype test set-up

-Level-0: designs reviewed by a panel including external referees.
-Level-1: re-evaluation of requirements due to the small data size expected from LHCb-light → a significant efficiency improvement.

Computing (CF)

New LHCb off-line environment is in place

Event generation and detector material simulation SICBMC (Pythia, QQ, GEANT3)

Detector digitization and event reconstruction BRUNEL (GAUDI)

Analysis of the reconstructed events DaVinci (GAUDI)

Large data samples (3.3 M events) produced in August by Amsterdam (25k), Bologna (1009k), Cambridge (37k), CERN (1452k) Lyon (595k), Moscow (27k), Oxford (24k), RAL(130k), Rio (24k)

All the OO-DST at CERN: used for physics performance studies of LHCb-light ₃₂

Online activities

Some prototype building in Timing and Fast Control (TFC)

TTCrx chips for all subdetectors have been ordered for delivery in 2003

4) Summary

- i Magnet, Ecal and Hcal are well into the construction as planned.
- ii Several other subsystems will start spending CORE money in 2003 for acquiring material and preparation of the production sites.
- iii LHCb-light re-optimization work, affecting the RICH-1 and TT designs, will be completed by September 2003. This delay does not compromise the overall LHCb schedule.
 Preliminary results show that large reduction of the tracking stations does not damage the physics performance.
- iv Much work to do but the experiment is well on its way to be ready for physics in 2007.