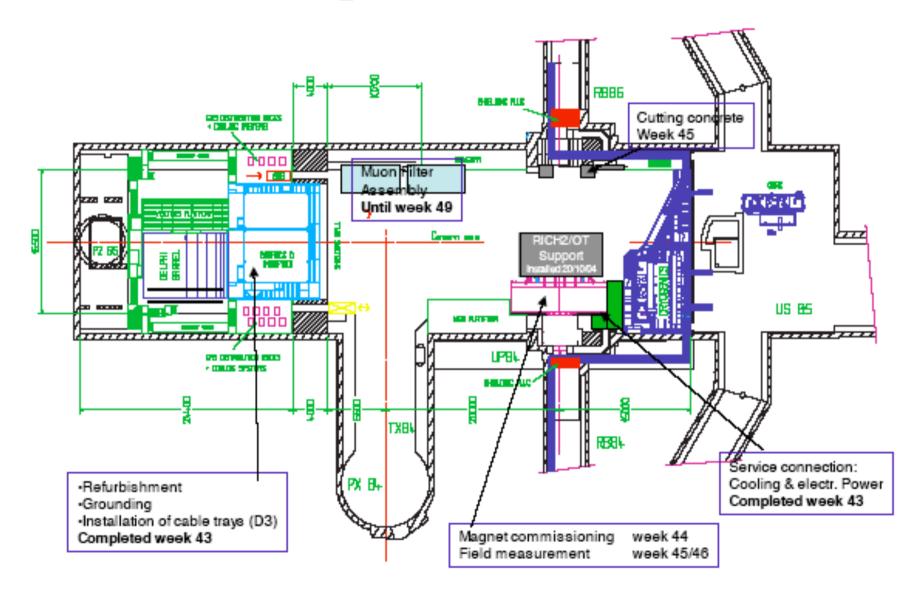
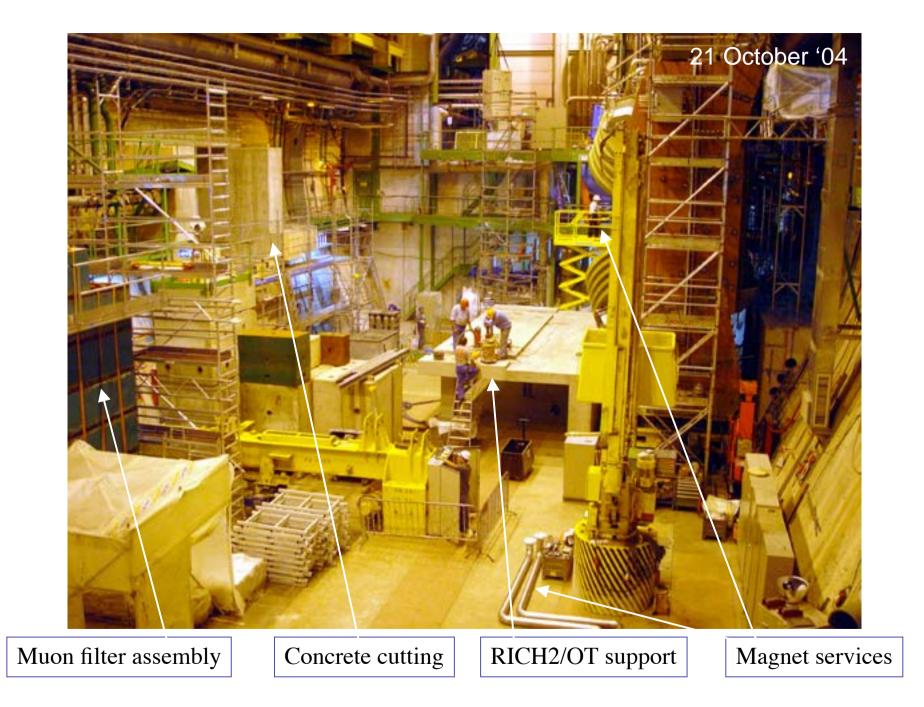
Status of the LHCb Experiment LHCb RRB at CERN 27 October 2004

on behalf of the LHCb Collaboration Tatsuya NAKADA CERN and Swiss Federal Institute of Technology Lausanne (EPFL)

Contents


- I) News
- II) Experimental Area
- III) Detector Status
- IV) Cost and Funding
- V) Summary

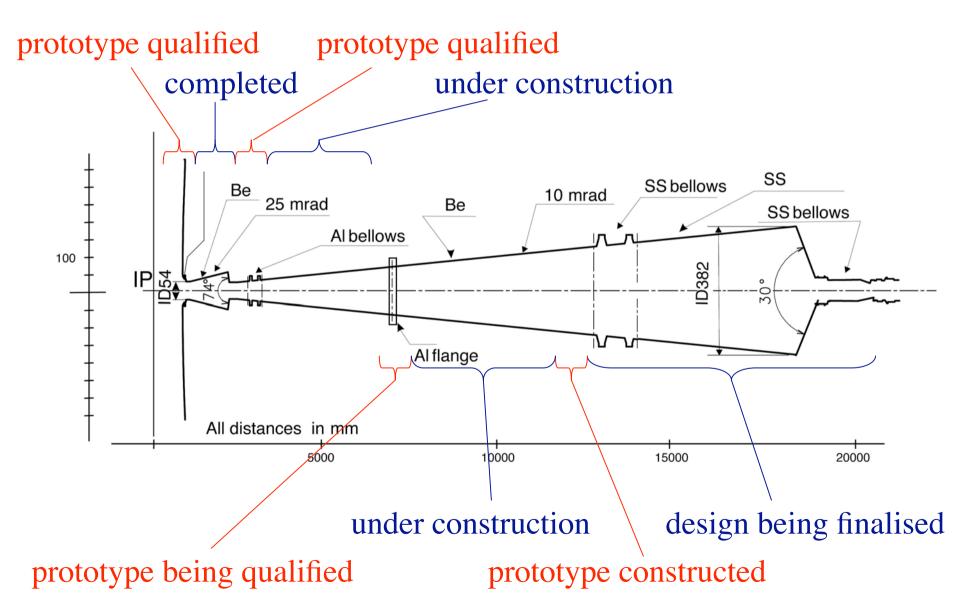

I) News

Poland has signed the construction MoU(also M&O MoU) remaining country: Brazil

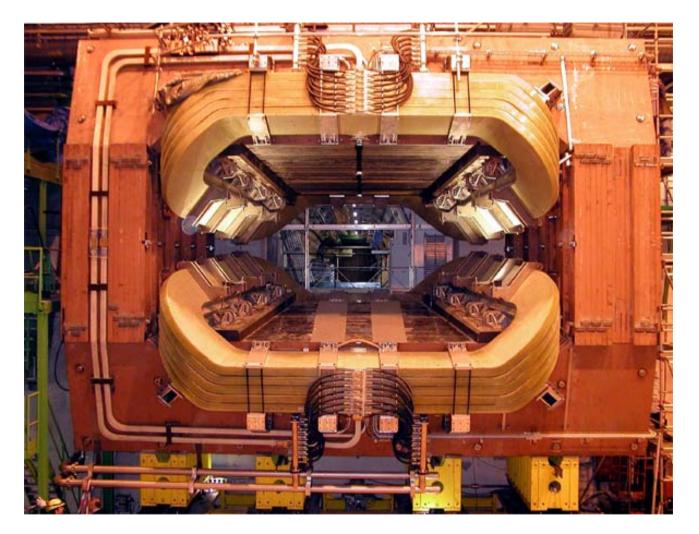
Dresden group transferred to Dortmund

II) Experimental area

Electronics barracks



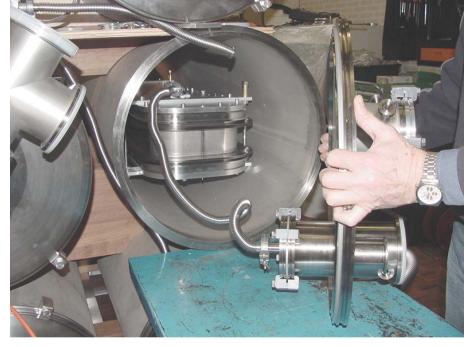
Cable trays


Racks

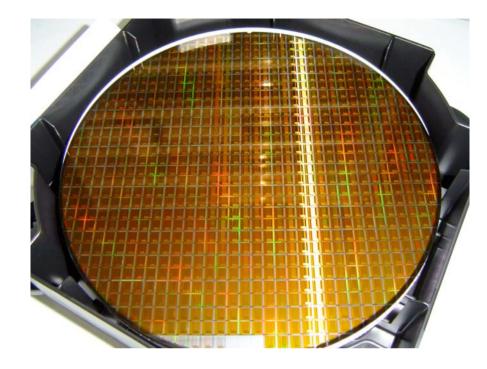
III) Detector Status

1) Beam Pipe

2) Magnet



Moved to the final position and aligned. Power and cooling have been connected. Commissioning and the first field map measurement start now.


VELO mechanics are advancing well

Mechanical assembly work in progress. The vacuum tank expected in November.

Testing the long term stability of the rectangular bellows.

Beetle chip -engineering run completed -6 wafers 786×6 chips in Heidelberg -current yield estimate 80% -chips being evaluated and so far good

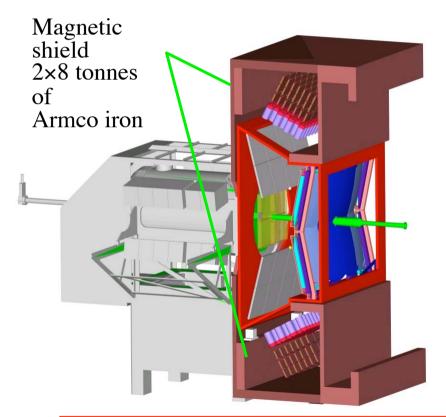
Also used by Silicon Tracker and Pile-up detector

Also used by most of other detectors

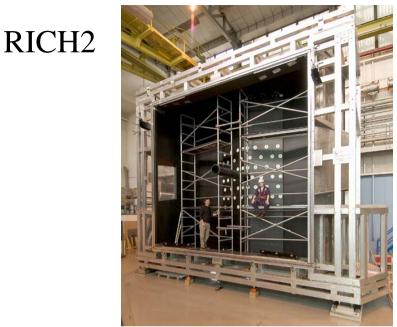
TELL1 board -prototype successful -preproduction started

First preproduction sensor and final hybrid

First two preproduction sensors delivered recently by Micron with three months delay

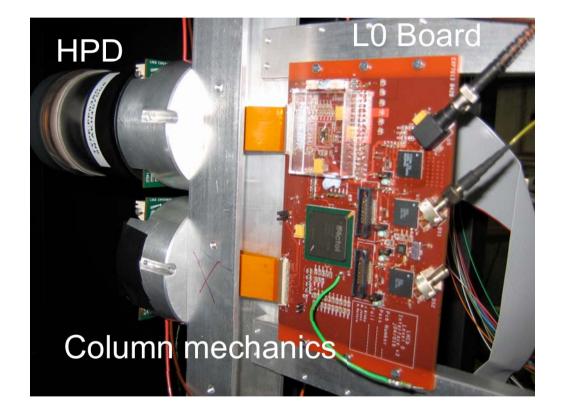

 \rightarrow being prepared for the test beam: 200/300 µm decision

An LHCb person will be stationed at Micron in order to ensure the quality control.


4) RICH

RICH1

-overall EDR completed-magnetic shielding PRR completed-magnetic shielding ordered


re-optimisation resulted in cost increase (shielding, mirrors, HPD coverage)

assembly well advancing

Integration of the HPD in the RICH system together with the other necessary electronics in progress

being tested with preproduction HPD's.

HPD production

- Technical problem with the sensor processing: never had before! Compared with prototype Si sensors:
 - 1) introducing SiO_2 passivation (front side)
 - 2) change of the Al sputtering machine at sub-contractor (back side)
 - 1) \rightarrow photo-resist peels off (metallography)

no bump-solder deposit possible

2) \rightarrow back side Al peels off (quality control?)

no grounding possible

Solution for 1)

additional Ti/W coating \rightarrow No peeling off any more!

Solution for 2)

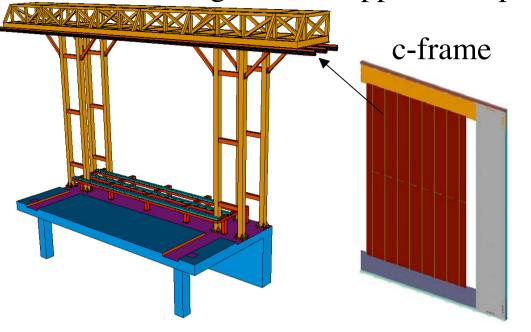
sputtering to be done at the bonding factory or/and sputtering to be done with more strict quality control

Two solutions are being tested now

A couple of months delay has been introduced: as soon as the solutions are verified, work out the overall plan—early next year.

5) Outer Tracker

Straw Chamber production


Production Readiness Review completed at all three production sites NIKHEF, UniHD and Warsaw

-Heidelberg: 60 modules to be produced 14 produced 1 rejected (first one) 5 days/module
-NIKHEF: 125 modules to be produced 19 produced 1 rejected (first one) 3 days/module
-Warsaw: 124 modules to be produce 19 produced 2 not gas tight and to be repaired 5 days/module (soon 4 day/module)

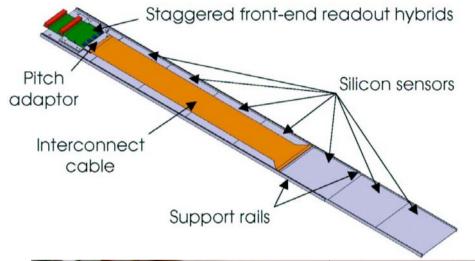
Heidelberg production rate is OK.

Warsaw production rate needs further increase → additional manpower NIKHEF production rate is OK but can be increased to help Warsaw → under investigation

Design of the support is in progress

c-frame prototype

front-end electronics, cooling, HV and gas connections


Prototype half station with 2 double layer modules being built.


Complete the study by the end of 2004.

6) Silicon Tracker

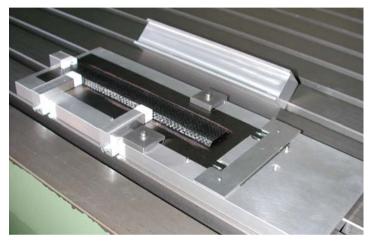
Trigger Tracker

-design being validated and finalised-sensor order being finalised-preparation of the production site

prototype ladder with long interconnect cable

automatic bonding machine

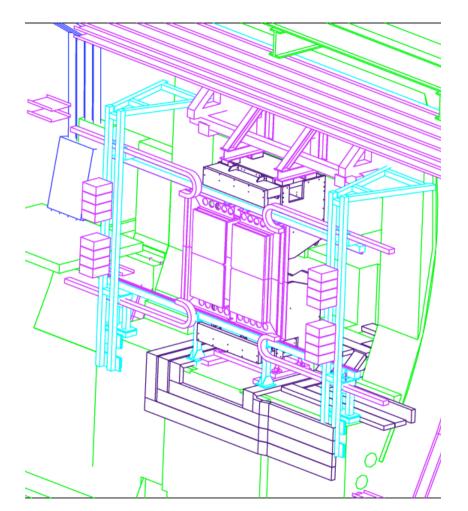
Clean room and 3D coordinate measuring machine

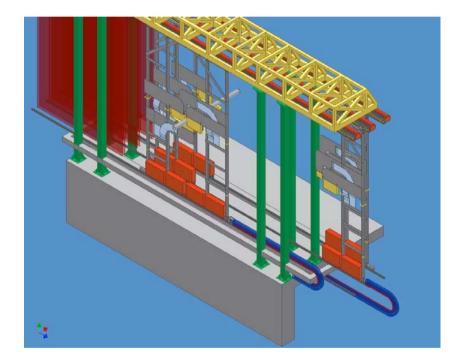


Inner Tracker

-design being validated and finalised -sensors ordered -preparation of the production site

Gluing of the reinforcement and the mini-balcony Mounting of the ladders to the cooling rod



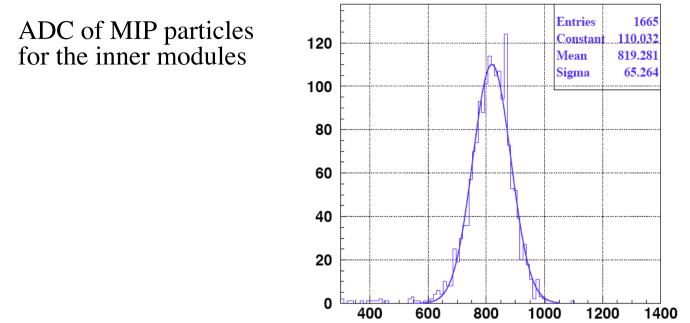


Readout electronics is common between TT and IT detector \longrightarrow service box - \rightarrow TELL1 ~100m digital ~5m analogue optical copper link link

ADC+Optical transmitter

Support structures for TT and IT are being studied

TT must fit between RICH1 and magnet


IT must be integrated with OT

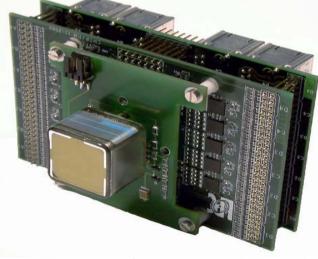
7) Calorimeter System

Preshower-SPD: more than 50% of modules completed (outer region)

Ecal: 100% completed and being tested with the cosmic rays at CERN

Hcal: 90% completed and being tested with ¹³⁷Cs at CERN

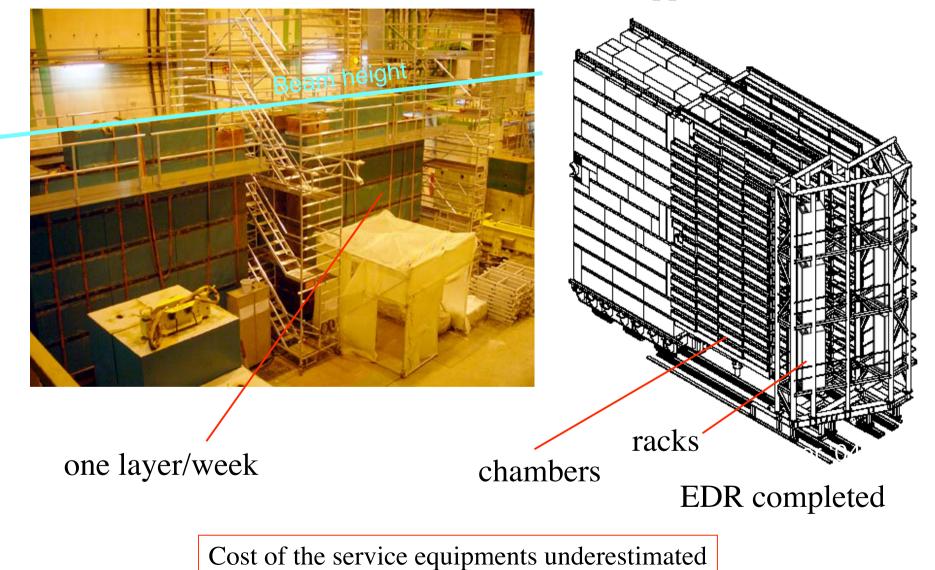
Ecal and Hcal chariots structure under construction



Ecal

PS-SPD/Ecal and Hcal electronics prototyping close to completion

PS very front-end card



E/Hcal front-end board

8) Muon System

Muon filter construction advancing well

chamber and rack support structure

Final front-end electronics (CARIOCA + DIALOG ASIC's) tested with the final chamber in GIF

all the requirements fulfilled

All the ASIC chips CARIOCA, DIALOG and SYNC submitted for engineering run in September.

CERN:	Chamber Production 134 chambers to be built 18 chambers built, 1 chamber/week		
Frascati:	248 chambers to be built 54 chambers built, 2 chambers/week		
PNPI:	600 chambers to be built 47 chambers built, 4 chambers/week (second production site will start in January 2005)		
Ferrara:	246 chambers to be built 10 chambers built, 1.5 chambers/week		
Firenze:	218 chambers to be built still training phase		

Goal: complete the chamber production before the end of 2006

Frascati and PNPI look more or less OK (Frascati can be increased to help others) CERN has to achieve the production rate to ~2 chambers/week Ferrara has to achieve the production rate to ~2.5 chambers/week Firenze has to achieve a production rate of ~2.5 chambers/week by 1/05

 \rightarrow must be followed carefully

cost increase

9) Trigger and Online

Level-0 trigger: custom electronics

muon $p_{\rm T}$ unit calorimeter $p_{\rm T}$ unit pile-up unit L0 decision unit

> prototype study in progress finalising the design

Level-1 and High Level trigger: commercially available switches and CPU's

Level-1 selection with VELO, TT and L0 information HLT with all the data

improving the selection algorithms bench marking the efficiency and latency e.g. Level-1 efficiency improved by 15% compared to TDR with an average latency well below the allocated time

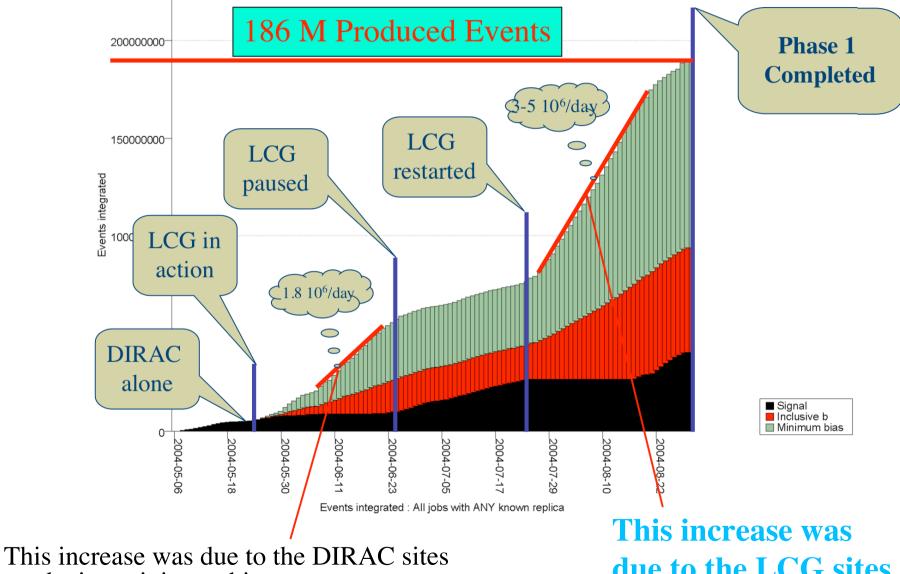
DAQ-CPU farm test bed installed

Testing of the full system:

hardware

network switches, sub-farm controllers, CPU's, storage, racks

software


data transfer, online version of GAUDI, event selection

ECS

DAQ and farm control and monitoring

10) Computing

Phase I Data Challenge 2004 achieved the initial goal

producing minimum bias events

due to the LCG sites

Site	Total Jobs	CPU Time (h)	J Time (h) Events		Events	
USA	56	1408	32500	13	0.02%	
Israel	77	2493	64600	21	0.03%	
Brasil	247	4489	231355	83	0.12%	
Switzerland	813	19826	726750	235	0.39%	
Taiwan	595	8332	757200	216	0.41%	
Canada	1148	21286	1204200	348	0.65%	
Poland	1418	24058	1224500	403	0.66%	
Hungary	1817	31103	1999200	592	1.08%	
France	5888	135632	4997156	1967	2.69%	
Netherlands	6408	131273	7811900	2246	4.21%	
Russia	10059	255324	8999750	3388	<mark>4.85%</mark>	
Spain	13378	304433	13687450	4189	7.38%	
Germany	17101	275037	17732655	6235	9.56%	
Italy	25626	618359	24836950	7763	<mark>13.39%</mark>	
United Kingdom	46580	917874	47535055	14567	25.62%	
CERN	52940	960470	53708405	18948	28.95%	
All Sites	184151	3711397	185549626	61214	100.00%	

Statistics for the LHCb related and other countries

LCG success rate 61 %

Phase 2 Stripping (pre-selection) starts soon Run 65 Tbytes of Data distributed over four sites: CERN, CNAF(IT), FZK(DE), PIC(ES), with "small" CPU requirements

Phase 3

End user analysis in a GRID environment will follow GANGA tools in preparation

IV) Cost and funding

Subsystems which are within the MoU cost

VELO

MoU cost 5.1 MCF incl. pile-up veto trigger Current cost estimate 4.82 MCHF (pile-up moved to trigger) MoU request 5.1 MCHF: DE, NL, CH, GB

Tracking

MoU cost 15.25 MCHF for the complete tracking system Current cost estimate 12.1 MCHF

changed due to re-optimization

less number of stations with more robust configuration (larger silicon coverage)

MoU request 14.80 MCHF: CH, CN, DE, ES, NL, PL, UA, CERN, ComF

Calorimeter

MoU cost 15.36 MCHF Current cost estimate 14.93 MCHF cost reduction due to saving effort MoU request 14.94 MCHF: FR, RO, RU, ES, UA, CERN, ComF

Trigger and Data Handling

MoU cost 10.2 MCF without pile-up veto trigger Current cost estimate 10.26 MCHF (pile-up moved from VELO) L1 and HLT are now one CPU farm MoU request 9.93 MCHF: DE, FR, GB, IT, NL, CH, CERN, ComF

Magnet:

MoU cost 6 MCHF

well within the budget, final cost after commissioning MoU request 6 MCHF: ComF

Infrastructure

MoU cost 4 MCF Current cost estimate 4 MCHF MoU request 4 MCHF: ComF

Subsystems which got more expensive

RICH

MoU cost 7.7 MCF

Current cost estimate 9.81 MCHF cost increase largely due to the re-optimisation MoU request 7.7 MCHF: GB, IT, CERN

Muon

MoU cost 7.45 MCHF + 4 MCHF Fe filter CERN in kind Current cost estimate 8.56 MCHF + 4 MCHF Fe filter increase of the chamber production cost service equipment cost underestimated MoU request 6.83 MCHF: BR, IT, RU, CERN + 4 MCHF: CERN Fe filter

Funding side (in MCHF)

Country	request	signed	Comments
Brazil	1.7	0	MoU not signed
China	0.25	0.1	MoU by Tsinghua University
FR(IN2P3)	7.5	7.5	extra engineering effort by Annecy
DE(BMBF)	4.8	3.76	MPI request to BMBF partly not approved
(MPG)	2.2	2.2	
Italy	10	10.6	extra contribution to Muon
NL	6.3	6.3	
Poland	0.5	0.5	
Romania	0.3	0.3	
Russia	3	2.5	shifted to machine, CERN partially compensates
Spain	2	2	
Switzerland	7.9	7.9	
GB	10.3	10.3	
Ukraine	0.2	0.2	
CERN	16.35	16.7	incl. muon Fe and Russian compensation
Total	73.3	70.86	

Summary

MoU cost Current cost MoU funding request 73.30 MCHF Current funding

75.05 MCHF 74.48 MCHF 70.86 MHCF

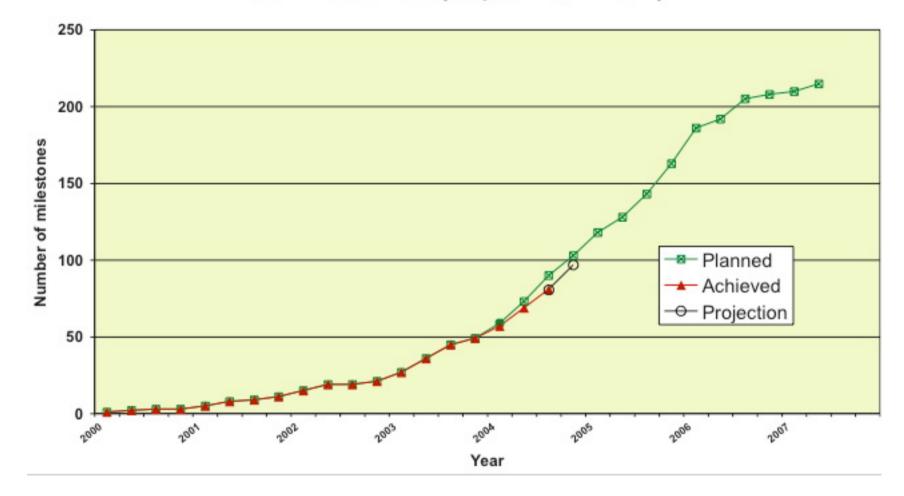
Missing fund mainly in

RICH: cost increase largely due to re-optimisation

Muon: cost increase and no funding from Brazil

(also help from the special Italian contribution)

Solution is being worked by


- 1) re-distributing the saving from Tracking
- 2) shifting fund from the CPU's of the L1/HLT processor farm by staging them (money needed in >2006)
- 3) bidding additional requests to the corresponding funding agencies RICH: GB, IT and CERN Muon: IT and CERN

New cost-funding matrix being aimed for the April 05 RRB

V) Summary

- 1) Production of the large sub-systems, i.e. Calorimeter System, RICH-2, Outer Tracker and Muon System, advancing
- 2) Delay in the Muon chamber production, must be followed carefully
- 3) HPD production encountered unforeseen problems. Solutions are believed to be found. Situation to be reviewed by early next year.
- 4) Production of VELO and Silicon Tracker System is expected to take off during the coming half year.
- 5) Trigger and online work progressing well
- 6) Phase I Data Challenge 04 completed successfully
- 7) Compared to the MoU, Tracking and Calorimeters cost less and RICH and Muon cost more. The total cost is still less than MoU, however 3.62 MCHF shortfall in funding. Try to solve by staging CPU's, which can be bought later, and bidding additional funds for the concerned sub-systems.

LHCC Milestones (September 2004)

