

# **Status of LHCb**

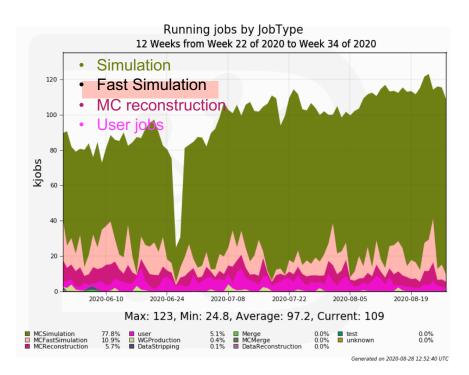
### RRB, 28<sup>th</sup> October 2020

- Collaboration Matters
- Selected Physics Results
- LHCb Upgrade I Construction Status
- LHCb Upgrade II Preparations
- Conclusions & Outlook

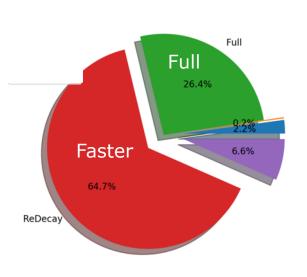


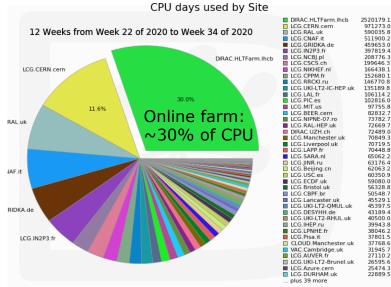


#### Chris Parkes on behalf of the LHCb Collaboration


#### **Collaboration Matters**




- The collaboration continues to grow and has updated its membership categories to allow further opportunities to those working on software and detector development.
- Three new groups have joined
  - Laboratoire Leprince-Ringuet, France has joined as a full member group
  - Hunan University, China has joined as an associate member group.
  - Karlsruhe Institute of Technology, Germany has joined as a Technical Associate Group
- One group has left as a consequence of difficult local circumstances
  - Constantine, Algeria, with the active embers joining other LHCb groups


## **Operation: Computing**

- Simulation: 90% of the computing power
  - Online farm: 40% (30%) of Simulation events (CPU)
- 140M events per day



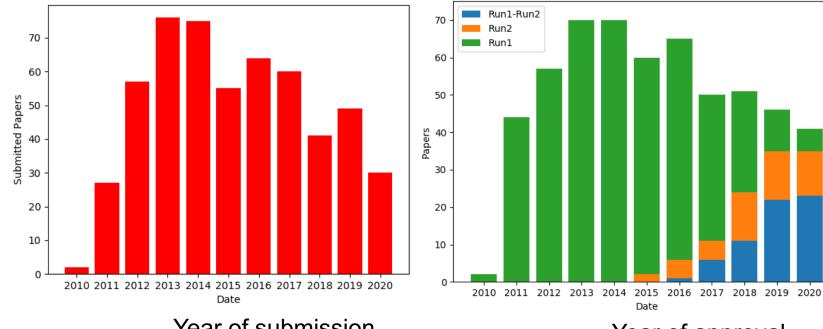
#### **Monte Carlo production**





Generated on 2020-08-28 12:57:34 UTC




#### Chris Parkes, LHCb RRB



| Data set  |               | Status    |
|-----------|---------------|-----------|
| pp Runs   | 2018          | completed |
|           | 2011 and 2012 | completed |
|           | 2015 and 2016 | completed |
|           | 2017          | completed |
| Ions Runs | 2017 pNe      | completed |
|           | 2018 PbPb     | completed |
|           | 2018 PbNe     | completed |

- Centrally run reconstruction and selection
  - sorting the data into streams
  - dedicated offline selection for each analysis
- Full legacy data set has been produced
- Huge amount of work, engaged our computing & operations teams for ~ 2 years

# Physics Results: Publications and Presentations



536 Submitted papers30 submitted papers 2020

#### In addition:

- 20 with the Editorial Board
- 33 in collaboration review

Year of submission

#### Year of approval

- Physics harvest continues apace
  - Despite strong focus up Upgrade preparation
  - Full Run1 & 2 analyses

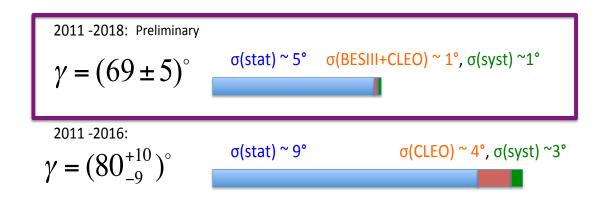
- Joint LHCb/Theory workshop this week
  - A number of new results being released



- LHCb was originally designed for matter antimatter asymmetry measurements (CP Violation) and studying rare decays
  - of course it has achieved much more
- Report on recent highlights from the core programme and beyond.

**CP Violation: World best y parameter** 

**CP Violation: Discovery of new type** 


**Rare decays: Flavour Anomalies** 

**Discovery of exotic tetraquark particles** 

### **CP Violation: World best y parameter**

- The precision measurement of the  $\gamma$  parameter is one of the key aims of LHCb

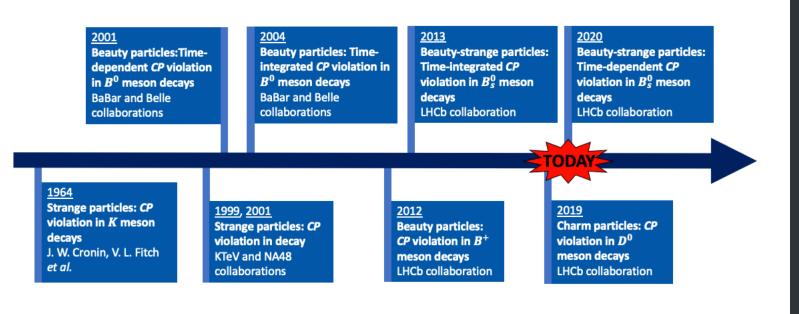
#### CKM angle $\gamma$ in $B^{\pm} \rightarrow DK^{\pm}$ and $B^{\pm} \rightarrow D\pi^{\pm}$ , with $D \rightarrow K_{s}\pi\pi$ and $D \rightarrow K_{s}KK$

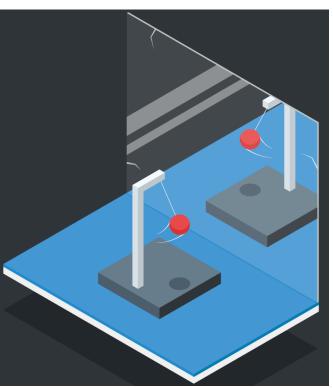


New inputs from BESIII on strong phases in  $D \rightarrow Ks\pi\pi$  make a large difference

- 120LHCb LHCb preliminary preliminary 100 Candidates /  $(12 \text{ MeV}/c^2)$ 00 09 09 08 01 00  $/ (12 \text{ MeV}/c^2)$  $B^{\pm} \rightarrow DK^{\pm}$ 80 R<sup>+</sup>  $D^* (\rightarrow D[\pi^0]) h^{\pm}$ 60 60  $D^* (\rightarrow D[\gamma])h^{\frac{1}{2}}$ Candidates  $\rightarrow D^0[\pi^{\pm}]K^{\mp}$ 40 40Part, reco, mis-ID Combinatorial 20🕂 Data 52005300540055005600570058005200530054005500 - 56005700-5800 $m(DK^+)$  [MeV/ $c^2$ ]  $m(DK^{-})$  [MeV/ $c^2$ ]
- Example bin 4 shown below and demonstrates a region of large asymmetry

LHCb-PAPER-2020-019


Joint LHCb/BESIII workshops held to facilitate synergy


#### **CP Violation: Discovery of new type**

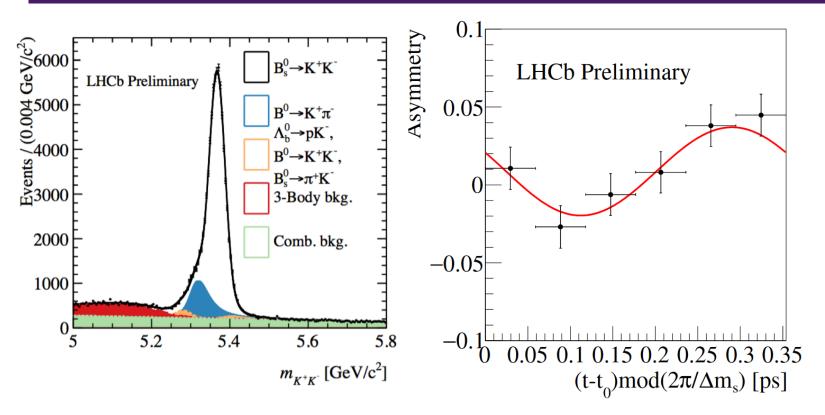
• New since submission of RRB paperwork

#### LHCb-PAPER-2020-029

#### **Observation of Time-dependent CP Violation in B**<sup>0</sup><sub>s</sub>






#### **CP Violation: Discovery of new type**



• New since submission of RRB paperwork

LHCb-PAPER-2020-029

### **Observation of Time-dependent CP Violation in B**<sup>0</sup><sub>s</sub>



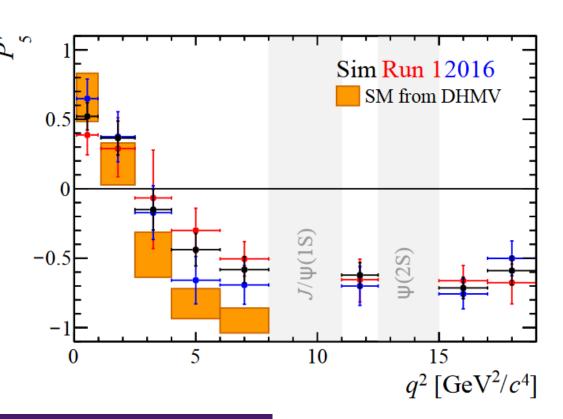
- B<sup>0</sup><sub>s</sub>→K<sup>+</sup>K<sup>-</sup>, CPV
   Observation (>5σ)
- Powered by key attributes of LHCb experiment

Time resolution – VELO

Particle Identification π/K - RICH

#### **Rare Decays: Flavour Anomalies**




LHCb-PAPER-2020-002

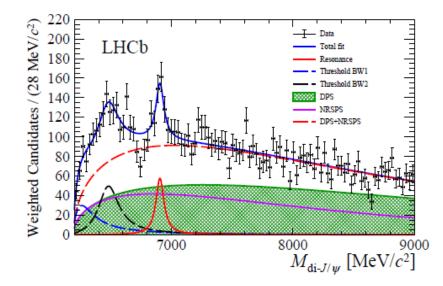
• Over past years a series of results have hinted at discrepancies from the Standard Model, understanding this is a high priority

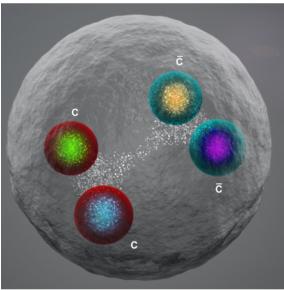
# $B^0 {\rightarrow} K^* \mu^+ \mu^-$

- Analysis of angular distributions

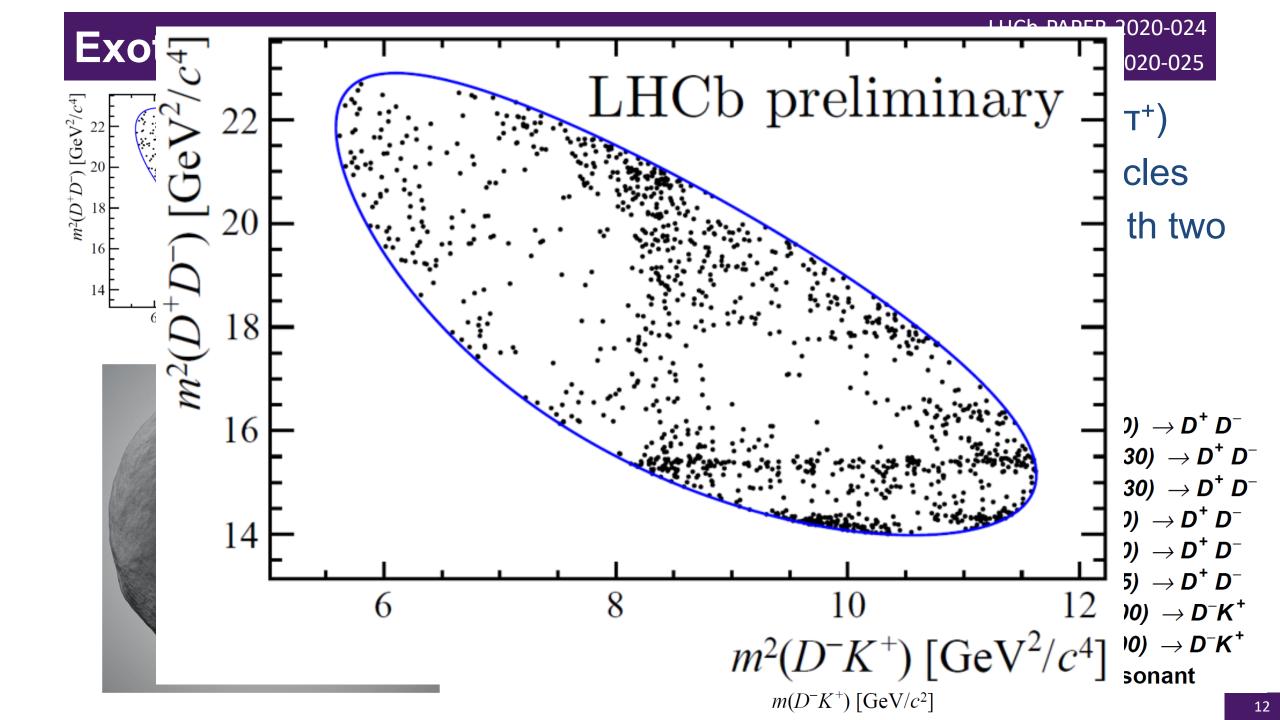
   minimizing theory uncertainties
- Global fit tension to Standard Model increases from 3.0 to  $3.3\sigma$
- Lively discussion on whether it can be explained by uncertainties in the current theory and how it could be explained in new physics



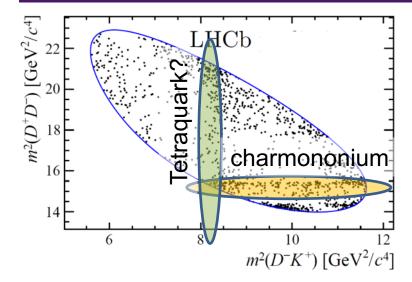

#### **Discovery of exotic tetraquark particles – Two new types !**


- LHCb had a wealth of results in exotic hadrons in recent years
  - Not composed of two or three quarks as is conventional

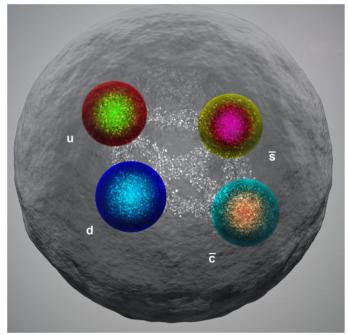
Exotic Hadrons: X(6900) cccc Tetraquark


LHCb-PAPER-2020-011

- Structures in J/ $\psi$ -pair mass spectrum (J/ $\psi \rightarrow \mu \mu$ )
- X(6900) resonance
- First fully heavy-quark tetraquarks !





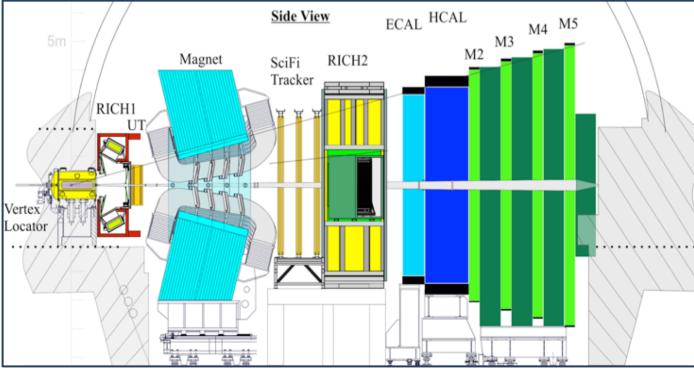


Theoretical interpretations include di-quark (cc) and anti-diquark (cc) systems attracting each other.

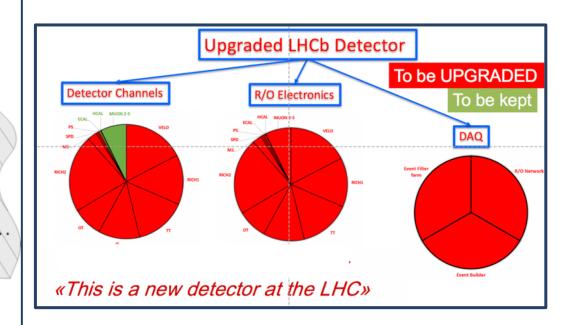


#### Exotic Hadrons: X<sub>0,1</sub>(2900) <u>cdus</u> Tetraquark? LHCb-PAPER-2020-024 LHCb-PAPER-2020-025



- Analysis of  $B \rightarrow D^+D^-K^+$  (with  $D^+ \rightarrow K^-\pi^+\pi^+$ )
- Fit with expectations from known particles
- Prominent D<sup>-</sup>K<sup>+</sup> structure, modelled with two tetraquarks
- First open-flavour exotic hadrons




## **Upgrade I: Reminder**



All sub-detectors read out at 40 MHz for a fully software trigger





- Pixel detector VELO with silicon microchannel cooling 5mm from LHC beam
- New RICH mechanics, optics and photodetectors
- New silicon strip upstream tracker UT detector
- New SciFi tracker with 11,000 km of scintillating fibres
- New electronics for muon and calorimeter systems

Major project being installed currently for operation in Run 3

# **Upgrade I: Impact of Covid-19**



#### 1400 members in 18 countries



- We strongly value our spirit of international collaboration across borders
- Physics results, software development continued apace
- But activities requiring physical contact and travel delayed

#### **Upgrade I construction:**

- Freeze in progress of many critical path items in March-June 2020
- Strong progress in all critical path items July-September 2020
- Delays in several critical path items September-....

### Expertise needed at CERN in 2021 for installation/commissioning

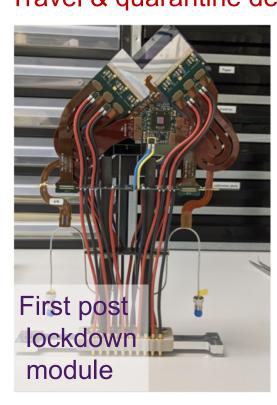
### LHCb Upgrade I: Infrastructure

- All long distance cable are installed, copper and fibre
- New cooling plants and pipes are installed, commissioning.
- Shielding wall back in place.
- Repair of magnet supports will complete next week
- Data Centre is operational.
- Event builder cabling is ongoing.

# Excellent progress on detector services and infrastructure








#### LHCb Upgrade I: Tracking [VELO, UT, SciFi] **VELO**



Microchannel plates: proceeding well VELO Modules: production ongoing Mechanics & Assembly: advancing SMOG cell installed Travel & quarantine delays

UT





Instrumented staves: production advancing Near detector electronics production complete 4-chip hybrids very advanced Detector box produced Assembly: clean room being installed now long contractor delay from travel restrictions

Chris Parkes, LHCb RRB

#### **SciFi**

Readout Board completed Cold-bar production completed during lockdown Three assembled C-frames completed C frame assembly currently



#### LHCb Upgrade I: Particle Identification [RICH, CALO, Muons]

#### RICH

RICH2 photodetector arrays finished and commissioned

Full QA of digital board complete

RICH1 Gas enclosure arrived at CERN 20<sup>th</sup> October

Pandemic has caused delays but lab access and key expert travel allowed excellent progress





Muon

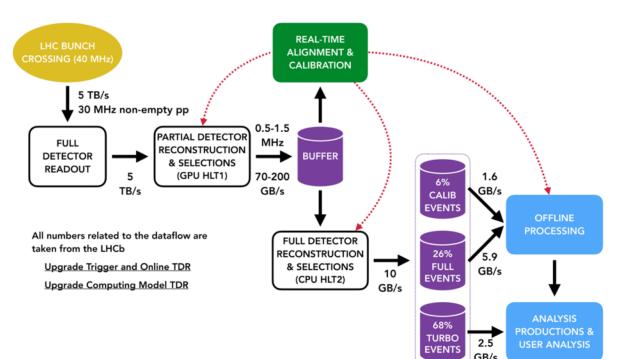
rack

commissioning

#### CALO

Front-end board final production about to start Control board production nearing completion Delays at production companies but acceptable

#### Muons


All electronic boards completed Installation progressing well HCAL beam plug installaled No major concerns



# LHCb Upgrade I: Computing, Online & Trigger



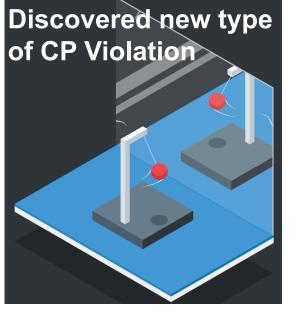
- FPGA DAQ (PCIe40) cards completed
- Event builder PC servers delivered
- Graphical Processing Units (GPUs) co-processors adopted for HLT1
  - Cost benefits, skill development for future
- Second level of trigger (CPU based) making good progress
  - Full reconstruction working, first selections in place
- Data Processing and Analysis
   (DPA) Project formed
  - Offline physics software



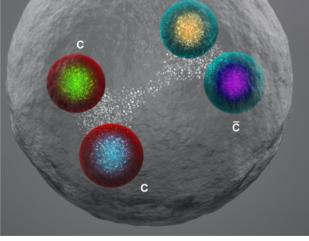
## LHCb Upgrade II

- Future major upgrade of the experiment, mainly for LS4 (~2030)
   with some preparatory work in LS3 (~2025)
- Strong support in European Strategy for Particle Physics 2020
- Framework Technical Design Report
  - Agreed submission in 2021 with LHCC
  - Initial cost ranges, indicative interests of countries
- Significant R&D Ongoing






e.g.


- New HVCMOS Chip under test at DESY testbeam this week
- ECAL prototypes in testbeam in two weeks

#### **Conclusions & Outlook**

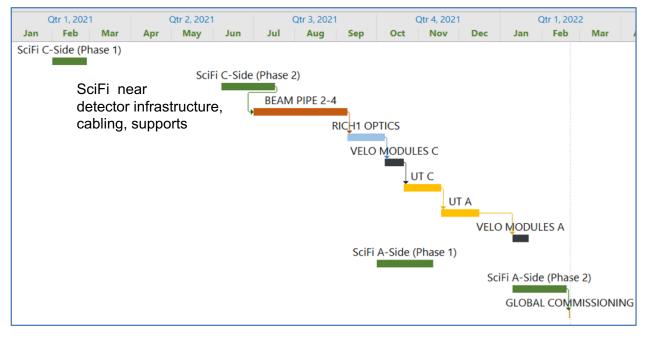
- A wealth of important scientific results have been delivered
- Significant progress has been made on the Upgrade I
  - Disruption from covid-19 has been inevitable
  - Compatible with LHC Schedule of cavern closure February 2022
- Planning for Upgrade II Framework TDR in place



Discovered new types of Tetraquarks<sub>c</sub>



Major achievements in production And installation for Upgrade though covid-19 causes delays




#### Backup

### Schedule – top level key detector components



• Latest possible schedule compatible with February 2022 cavern closure



- this is **not the aim** 

 this is the planning based on unblocking travel from institutes only by March 1<sup>st</sup> 2021

- In this schedule
  - Beam-pipe insertion compatible with an LHC beam test in Sept/Oct. 2021 but with limited contignecy
- SciFi, VELO and UT are the projects that drive the critical path